Development of Immuno-Analytical System for Microbial Cells by using Dot-Blotter

Dot-Blotter 진공 포획방식에 의한 미생물세포 면역분석시스템의 개발

  • Published : 1999.02.01

Abstract

In order to eventually fabricate an analytical system for infectious microorganisms, we synthesized major immunochemical components, utilized them for the construction of model system, and investigated an assay concept for bacterial whole cells. For the preparation of system components, a polyclonal antibody, against Salmonella thompson as model analyte, purified by immuno-affinity chromatography was used to chemically link to streptavidin or an enzyme, horseradish peroxidase(HRP). The antibody and streptavidin was modified with sulfosuccinimidyl 4-[N-maleimidomethyl]cyclohexane-1-carboxylate and N-succinimidyl-3-[2-pyridyldithio]propionate(subsequently activated by dithiotheritol), respectively. The modified components were reacted to synthesize antibody-streptavidin conjugates which were then purified on a two-layer chromatography column of diaminobiotin gel and Sephadex G-100. For antibody-HRP conjugates, HRP molecules were activated by $NalO_4$ oxidation and then coupled to immunoglobulin. After stabilizing with ($NaCNBH_3$, the conjugates were purified by size exclusion chromatography on Biogel A5M column. To devise a model system, such produced components were combined with a dot-blotter in which a nitrocellulose membrane($12{\mu}m$ pre size) with immobilized biotin was already located. The analyte (S. thompson cells) was reacted with the both antibody conjugates in a liquid phase, and the complexes formed were captured on the membrane surfaces by applying vacuum in the bottom compartment of the blotter to invoke biotin-streptavidin reaction. Under optimal conditions, the system enabled to identify the analytical concept for bacterial whole cells, and the lower limit of detection was approximately $1{\mu}g/m{\ell}$($10^5-10^6$ cells/m$m{\ell}$). The controlling factors were the concentrations of each antibody conjugate that caused agglutination in the presence of analyte as they increased.

병원성 미생물을 측정할 수 있는 분석시스템을 구성하기 위해 면역학적 성분들을 합성하였고, 이를 이용하여 모델 시스템을 구성함으로써 균 세포 분석원리가 연구되었다. 구성성분을 준비하기 위해 Salmonella thompson에 대한 복합 클론항체를 면역 친화 크로마토그래피를 이용하여 정제하였고, 이렇게 정제된 항체를 Streptavidin과 horseradush peroxdase에 화학결합시켰다. 항체와 Streptavidinfdm은 각각 SMCC와 SPDP에 의해 활성화 되있고 두 물질을 반응시킴으로써 중합체가 합성되었다. 중합체는diaminobiotion 젤과 sephades G-100젤을 이중 층으로 쌓은 칼럼을 이용하여 정제되었다. 항체- HRP 중합체의 합성을 위해, HRP를 $NAIO_4$ 처리에 의해 안정화된 중합체는 Biohel A5M을 이용한size exchusion크로토그래피로 정제되었다. 이렇게 준비된 중합체들과 dot-bloner 그리고 biotim이 고정화된 nitrocellulose membrane($12\mum$ pore size)을 이용하여 모델시스템을 구성하였다. 분석물질(S.Thormpson cells)을 먼적 액상에서 두 중합체와 반응되었고 반응먹을 membrane이 정착된 blotter에 옮긴 후 하부에 진공을 걸어 면역복합체를 biotin-streptavidin 반응에 의해 membrane 표면에 포획하였다.최적조건 하에서 시스템의 균 세포 분석원리를 확인하였으며 측정하한농도는 약 $1{\mu}g/m{\ell}(10^5 {\cdot} 10^6\;cells/m{\ell}$인 것으로 나타났다. 이러한 측정성능의 주요조절인자는 두항체 종합체 농도의 증가는 항원-항체 응집반응을 초래하는 것으로 나타났다.

Keywords

References

  1. 지역사회보건학 정규철
  2. ELISA Crowther, J. R.
  3. Anal. Biochem. v.205 Antibody-Antigen Complex Formation with Immobilized Immunoglobulins Schramm, W.;S.-H. Paek
  4. 병원미생물학 이종훈
  5. Appl. Environ. Microbiol. v.62 Production and characterization of monoclonal antibodys against the O-5 antigen of Salmonella typhimurium lipopolysaccharide Jaradat, Z. W.;J. Zawistowski
  6. Appl. Environ. Microbiol. v.63 Detection of Coxiella burnetii in cow's milk by PCR-enzyme-linked Immunosorbent assay combined with a novel sample preparation method Muramatsu, Y.;T. Yanase;T. Okabayashi;H. Ueno;C. Morita
  7. J. Assoc. Off Anal. Chem. v.71 Rapid Monoclonal Antibody-Based Enzyme-Linked Immunosorbent Assay for Detection of Listeria in Food Products Mattinggly, J. A.;B. T. Butman;M. C. Plank;R. J. Durham;B. J. Robison
  8. Appl. Environ. Microbiol. v.60 Identification of Capsule-Forming Bacillus anthracis Spores with the PCR and a Novel Dual-Probe Hybridization Format Reif, T. C.;M. Johns;S. D. Pillai;M. Carl
  9. Appl. Environ. Microbiol. v.61 Identification of the Fire Blight Pathogen, Erwinia amylovora by PCR Assaywith Chromosomal DNA Bereswill, S.;P. Bugert;I. Bruchmuller;K. Geider
  10. Enzymatic Control of Carryover Contamination in PCR, PCR primer Hartley, J. L.;A. Rashtchian;C. W. Diffenbach(ed.);G. S. Dveksler(ed.)
  11. Korean J. Biotechnol. Bioeng. v.12 Measuring chracteristics of mouse-IgG immunoassay with light addressable potentiometric sensor Choi, K. B.;H. J. Youn;S. H. Cha;J. D. Choi
  12. J. Clin. Microbiol. v.27 Detection of Neisseria meningitidis and Yersinia pestis with a Novel Silicon-Based Sensor Libby, J. M.;H. G. Wada
  13. Anal. Biochem. v.172 Removal of dodecyl sulfate from protein solution Suzuki, H.;T. Terada
  14. Protein Concentration Determination, Protein Methods Bollag, D. M.;M. D. Rozycki;S. J. Edelstein
  15. Electrophoresis v.11 Rapid Detection of proteins by Enzyme-Linked Immunofiltration Assay after Transfer onto Nitrocellulose membranes Pinon, J. M.;T. D. Puygauthier;H. Lepan;C. Marx;A. Bonhomme;J. Boulant;R. Geers;H. Dupont
  16. Application of ELISA to Microbiology, ELISA and Other Solid Phase Immunoassays Challacombe, S. J.;D. M. Kemeny(ed.);S. J. Challacombe(ed.)
  17. Enzyme-Conjugated Antibodies : Preparation and Use, Immunochemistry Kerr, M. A.;L. M. Loomes;S. J. Thorpe;M. A. Kerr(ed.)
  18. Bioconjugate Chem. v.4 Prexidase-Linked anti-Basic Fibroblast Growth Factor Monoclonal antibody Fab' conjugates: Application for Two-Site Enzyme Immunoassay and Immuno-histochemical Detection Kurobe, M.;Y. Takei;T. Fukatsu;A. Kato;K. Hayashi
  19. J. Histochem. Cytochem. v.30 Cinjugation of Horseradish Peroxidase to Fab Fragments with Different Homobifunctional and Heterobifunctional Cross-Linking reagens Nygren, H.
  20. FEBS Letters v.15 Immunoassay using Antigen-Enzyme Conjugates Weemen, B. K. V.;A. H. W. M. Schuurs
  21. J. Histichem. Cytochem. v.22 Peroxidase-Labeled Antibody A new method of conjugation Nakane, P. K.;A. Kawaoi
  22. Korean J. Biotechnol. Bioeng. v.12 Chemical Coupling of Recombinant gp41' to Monoclonal Antibody for AIDS Diagnosis Mok, R.-S.;Y.-I. Lee;S.-H. Paek
  23. Dictionary of Microbiology and Molecular Biology Singleton, P.;D. Sainsbury
  24. Anal. Biochem. v.131 Protein blotting : principles and applications Gershoni, J. M.;G. E. Palade
  25. Appl. Environ. Microbiol. v.62 Detection and Serogroup Differentiation of Salmonella spp. in Food within 30 Hours by Enrichment-Immunoassay with a T6 Monoclonal Antibody Capture Enzyme-Linked Immunosorbent Assay Ng, S. P.;C. O. Tsui;D. Reberts;P. Y. Chau;M. H. Ng
  26. Anal. Biochem. v.202 Detection of Nicotinic Receptor Ligands with a Light Addressable Potentiometric Sensor Rogers, K. R.;J. C. Fernando;R. G. Thompson;J. J. Valdes;M. E. Eldefrawi
  27. Current Opinion in Biotechnology v.5 Immunochemical Detection using the Light Addressable Potentiometric Sensor Panfili, P. R.;K. Dill;J. D. Olson
  28. Biosensor & Bioelectronics v.8 Detection of Subnanogram Quantities of Mojave Toxon via Enzyme Immunoassay with Light Addressable Potentiometric Detector Colston, J. T.;P. Kumar;E. D. Real;A. T. C. Tsin;J. J. Valdes;J. P. Chambers
  29. J. Clin. Microbiol. v.22 Detection of Hepatitis A Virus and Antibody by Solid-Phase Radioimmunoassay and Enzyme-Linked Immunosorbent Assay with Monoclonal Antibodies Coulepis, A. G.;M. F. Veale;A. MacGregor;M. Kornitschuk;I. D. Gust
  30. Anal. Biochem. v.248 Amplified enzyme-linked-immunofilter assay enable detection of 50-$10^5$ bacterial cells within 1hour Paffard, S. M.;R. J. Miles;C. R. Clark;R. G. Price