• Title/Summary/Keyword: strength ratios

Search Result 1,629, Processing Time 0.024 seconds

Improvement of bond strength and durability of concrete incorporating high volumes of class F fly ash

  • Wu, Chung-Hao;Chen, Chien-Jung;Lin, Yu-Feng;Lin, Shu-Ken
    • Advances in concrete construction
    • /
    • v.12 no.5
    • /
    • pp.367-375
    • /
    • 2021
  • This study experimentally investigated the improvement of bond strength and durability of concrete containing high volume fly ash. Concrete mixtures made with 0%, 25% and 60% replacement of cement with class F fly ash were prepared. Water-binder ratios ranged from 0.28 to 0.72. The compressive, flexural and pullout bond strength, the resistance to chloride-ion penetration, and the water permeability of concrete were measured and presented. Test results indicate that except for the concretes at early ages, the mechanical properties, bond strength, and the durability-related chloride-ion permeability and water permeability of concrete containing high volume (60% cement replacement) fly ash were obviously superior to the concrete without fly ash at later ages of beyond 56 days. The enhanced bond strength for the high volume fly-ash concrete either with or without steel confinement is a significant finding which might be valuable for the structural application.

Strength Variation of Cemented Sand Due to Wetting (수침이 고결모래의 강도에 미치는 영향)

  • Park, Sung-Sik;Kim, Ki-Young;Kim, Chang-Woo;Choi, Hyun-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6C
    • /
    • pp.303-311
    • /
    • 2009
  • In this study, weakly cemented sand was cured at air dry condition with different periods (3, 7, 14, 21, 28 days) and its unconfined compressive strength was evaluated. As a result, the strength of specimens with low cement ratios such as 4 and 8% increases until 7 days curing but, after 7 days, their strength continuously decreases. The strength of specimens with relatively high cement ratios such as 12 and 16% increases up to 7 days curing and then stays almost constant until 21 days. After 21 days curing, their strength suddenly dropped down, which is much lower than the strength of 3 days curing specimen. A cemented sand and gravel called CSG, which is highly permeable, could be exposed to repetitive drying and wetting conditions due to rainfall or groundwater table change during curing. In this study, the weakly cemented sand is exposed to repetitive drying and wetting and then its unconfined compressive strength was evaluated. As a result, the strength of a specimen with 27 days drying condition following 1 day wetting was at maximum 35% lower than the one cured under 28 days drying. The strength degradation due to wetting decreases as a cement ratio increases. However, the strength of a specimen with repetitive drying and wetting increases as the number of wetting increases until 3 cycles. After 3 cycles of drying and wetting, the rate of strength increase decreases due to an insufficient water for hydration or stays constant. If the sufficient water supply is provided to cemented sand during curing, the target or design strength increase can be achieved. Otherwise, the strength degradation due to wetting should be considered at the design stage.

Prediction of Strength of High-Strength Concrete by the Maturity Method (적산온도 방식을 이용한 고강도 콘크리트의 강도 예측)

  • 길배수;김태근;한장현;권영진;남재현;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.259-264
    • /
    • 1999
  • The aim of this study of to compare the development of compressive strength of high-strength concrete with maturity and investigate the applicability the strength prediction models. An experiment was attempted on the high-strength concrete mixes using portland cement replaced by silica fume of 10% by weight of cement, the water-binder ratios of mixes being 0.30 and 0.35, the curing temperatures being 30, 20, 10, 5$^{\circ}C$. Test results of mixes are statistically analyzed to infer the correlation coefficient between the maturity and the compressive strength of high-strength concrete. The constant of strength prediction equation were determined from test results, and the equation was adopted to predict the strength of slab(W80$\times$D100$\times$H20cm). The slab was cast in the laboratory from the same batch water-binder ratio of 0.30, and cores were cut from slab in order to estimate the actual strength. These values are used to compare with predicted value. The present study allows more realistic determination of early age compressive strength of high-strength concrete and can be efficiently used to control the quality in actual construction.

  • PDF

Characteristics of Bond Behavior According to Confinement and Stiffness Ratios of External Confining Jackets (외부구속자켓의 구속비와 강도비에 따른 콘크리트 부착거동의 특성)

  • Choi, Eunsoo;Jung, Chunsung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.87-94
    • /
    • 2014
  • This study analyzes the characteristics of bond behavior of concrete, which is confined by external jackets such as shape memory alloy (SMA) and steel, according to confinement and stiffness ratios of the external jackets. For this purpose, SMA wires with 1.0 mm diameter and steel plates with 1.0 and 1.5 thickness are used to induce difference on confinement and stiffness ratios and, then, bond strength and behavior are analyzed considering the two factors. When external jakcets are used for the concrete cylinders, bond strengths of specimens increase and their bond failures are transferred from splitting failure to pull-out failure and, thus, the external jackets show confining effect. Bond strenght of concrete increase with increasing confinement and stiffness ratios of the external jackets. However, maximal circumferential strains decrease linearly with increasing the two values.

Analytical Study on the Structural Behaviors of Stub Columns Fabricated with HSA800 of High Performance Steel Subjected to Eccentric Loads (편심하중을 받는 고성능강(HSA800) 조립 단주의 구조거동에 관한 해석적 연구)

  • Yoo, Jung Han;Kim, Joo Woo;Yang, Jae Guen;Kang, Joo Won;Lee, Dong Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.5
    • /
    • pp.453-461
    • /
    • 2014
  • In this study, the stub columns of built-up H-section and square hollow section subjected to eccentrical loads are tested to evaluate the applicability of the structural members with 800MPa high-strength steel (HSA800) on current design specification. Analytical studies of FE model are conducted to validate the test results and then the verified FE models are used for extensive parametric studies for checking up the applicability of current design code. The parameters are width-to-thickness ratios and axial load ratios. From P-M correlations on parameter models, all stub columns with non-compact sections exceed the current design requirements about axial force and flexural strength ratios are sufficiently secured as the axial load ratios are decreased. The built-up hollow sections with slender section model do not satisfy the current design specification about axial force.

An Experimental Study on Allowable Compressive Stress at Prestress Transfer in Pre-Tensioned Concrete Members (프리텐션된 콘크리트 부재의 프리스트레스 도입시 허용압축응력에 관한 실험적 연구)

  • Lee, Jeong Yeon;Lee, Deuck Hang;Kim, Kang Su;Park, Min Kook;Yoon, Sang Chun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.9-17
    • /
    • 2012
  • In the previous research, allowable compressive stress was analyzed based on strength theory, in which primary effect factors on the allowable compressive stress, such as eccentricity ratio, section type, section size, prestress and self-weight moment, were considered. As its results, allowable compressive stress equations were proposed. As a series of the previous research, this paper presents an experimental study on the prestress at transfer of pre-tensioned members with different eccentricity ratios. The results shows that ACI318-08 and EC2-02 are unconservative for the members under low eccentricity ratios, and they are conservative for the members under high eccentricity ratios. Compared to the code provisions, the results indicates that the proposed equation reasonably well evaluates the allowable compressive stresses for those with different eccentricity ratios.

Discrimination of Ginseng Habitat by Using Instrumental Analysis Techniques

  • Sohn H. J.;Lee S. K.;Cho B. G.;Kim S. J.;Lee N. Y.;Choi D. S.;Jeong M. S.;Bae H. R.;Yang J. W.
    • Proceedings of the Ginseng society Conference
    • /
    • 2002.10a
    • /
    • pp.238-252
    • /
    • 2002
  • In order to screen out indicators for the discrimination of ginseng habitat, some physical and chemical characteristics of Korean red ginsengs (94 kinds) and Chinese red ginsengs (50 kinds) were analyzed by using a rheometer, an electronic nose system, a combined technique of solid phase micro-extraction (SPME) and gas chromatograph equipped with an electron capture detector (GC/ECD), an X-ray fluorescence spectrometer (XRF), an inductively coupled plasma mass spectrometer (ICP/MS), a near infrared spectrometer (NIRs) and high performance liquid chromatography equipped with evaporative light scattering detector (HPLC/ELSD). The results are summarized as follows: (i) The rhizome strengths of Korean red ginsengs were significantly higher than those of Chinese red ginsengs. (ii) The electronic nose patterns of Korean red ginsengs were significantly different from those of Chinese red ginsengs. (iii) Some unidentified peaks were detected not in the headspace of Korean red ginsengs but in the headspace of Chinese red ginsengs when the headspace volatiles prepared by the SPME technique were analyzed by GC/ECD. (iv) Either the content ratios of K to Ca or Mn to Fe were significantly different between Korean red ginsengs and Chinese red ginsengs. (v) The reflectance ratios of NIRs wavenumbers such as $904\;cm^{-1}\;to\;1088\;cm^{-1}$ for Korean red ginsengs were significantly different from those for Chinese red ginsengs. (vi) The content ratios of ginsenoside-Rg to ginsenoside-Re of Korean red ginsengs were significantly higher than those of Chinese red ginsengs. These results indicate that the rhizome strength, the electronic nose pattern, the occurrence of ECD-sensitive headspace volatile components, the content ratios of K to Ca and Mn to Fe, the NIRs pattern and the content ratio of ginsenoside-Rg to -Re may be indicators for the discrimination of ginseng habitat.

  • PDF

Study of the longitudinal reinforcement in reinforced concrete-filled steel tube short column subjected to axial loading

  • Alifujiang Xiamuxi;Caijian Liu;Alipujiang Jierula
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.709-728
    • /
    • 2023
  • Experimental and analytical studies were conducted to clarify the influencing mechanisms of the longitudinal reinforcement on performance of axially loaded Reinforced Concrete-Filled Steel Tube (R-CFST) short columns. The longitudinal reinforcement ratio was set as parameter, and 10 R-CFST specimens with five different ratios and three Concrete-Filled Steel Tube (CFST) specimens for comparison were prepared and tested. Based on the test results, the failure modes, load transfer responses, peak load, stiffness, yield to strength ratio, ductility, fracture toughness, composite efficiency and stress state of steel tube were theoretically analyzed. To further examine, analytical investigations were then performed, material model for concrete core was proposed and verified against the test, and thereafter 36 model specimens with four different wall-thickness of steel tube, coupling with nine reinforcement ratios, were simulated. Finally, considering the experimental and analytical results, the prediction equations for ultimate load bearing capacity of R-CFSTs were modified from the equations of CFSTs given in codes, and a new equation which embeds the effect of reinforcement was proposed, and equations were validated against experimental data. The results indicate that longitudinal reinforcement significantly impacts the behavior of R-CFST as steel tube does; the proposed analytical model is effective and reasonable; proper ratios of longitudinal reinforcement enable the R-CFSTs obtain better balance between the performance and the construction cost, and the range for the proper ratios is recommended between 1.0% and 3.0%, regardless of wall-thickness of steel tube; the proposed equation is recommended for more accurate and stable prediction of the strength of R-CFSTs.

Workability and Compressive Strength Properties of Magnesia-Potassium Phosphate Composites for Biological Panel (생물학적 판넬용 마그네시아-인산칼륨 복합체의 유동 및 압축강도 특성)

  • Choi, Yung-Wang;Lee, Jae-Heun;Choi, Byung-Keol;Oh, Sung-Rok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.357-364
    • /
    • 2017
  • In this paper, we investigated the influence of flow and compressive strength on the mixing ratio and water-to-binder (W/B) ratio of magnesia - potassium phosphate composites for controlling the quality of the Magnesia-Potassium Phosphate Composites(Magnesia-Potassium Phosphate Composites, MPPC) as a matrix material for biological panels. MPPC was produced at 7 W/B ratios (30, 35, 40, 45, 50, 55 and 60 vol.%) and 4 P:M ratios (1:0.5, 1:1.0, 1:2.0 and 1:3.0). The experiment results confirmed that the flow and compressive strength of MPPC depend strongly on both P:M and W/B ratios. The flow of MPPC showed that as P: M was increased, the mixing did not occur due to the shortage of the compounding amount for the reaction, because of the large density difference between P and M. The compressive strength of MPPC showed a tendency to decrease with increasing P:Mratio but there was a contradictory result with no proportional change according to W/B ratio. These results indicate that the optimum compounding ratio exists for MPPC according to W/B ratio. These results will be used as the basis data for quality control of the fluidity and compressive strength of matrix materials in terms of material in biological panel design.

Evaluation of Structural Performance in CFT Truss Girder with the Arch-Shaped Lower Chord (아치형상의 하현재를 갖는 CFT 트러스 거더의 구조성능 평가)

  • Chung, Chul-Hun;Song, Na-Young;Ma, Hyang-Wook;Oh, Hyun-Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.315-327
    • /
    • 2009
  • In this study, the static test of CFT truss girders for different f/L ratios was conducted to determine how the ultimate strength of the CFT truss girder was affected by different f/L ratios. A total of two CFT truss girders were constructed and tested under bending condition. The length of all specimens is 20,000 mm. The CFT truss girder is a tubular truss composed of chord members made of concrete-filled circular tubes. The main parameter analyzed in the experimental study was the f/L ratio. This factor was experimentally investigated to assess their influence on ultimate strength and stiffness. The test results show that CFT truss girder has good elastic-plastic property and ductility. The presence of the f/L ratios in CFT truss girders alters its ultimate strength because of the global stiffness of the CFT truss girders. The ultimate strength of CFT truss girders increases as the f/L ratio increases. If the f/L ratio of the CFT truss girders increases twofold, the ultimate strengths increase by 80%. The CFT truss girders showed that they retained large deformation capacity, even after reaching the ultimate strength. Results of this investigation demonstrated the potential for efficiently using a CFT truss as a bridge girder.