• Title/Summary/Keyword: stream stage

Search Result 306, Processing Time 0.026 seconds

Development of a Stream Discharge Estimation Program (자연하천 유량산정 프로그램 개발)

  • Lee Sang Jin;Hwang Man Ha;Lee Bae Sung;Ko Ick Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.1
    • /
    • pp.27-38
    • /
    • 2006
  • In this study, we developed a program to estimate discharge efficiently considering major hydraulic characteristic including water level, river bed, water slope and roughness coefficient in a natural river. Stream discharge was measured at Gongju gauge station located in the down stream of the Daechung Dam during normal and dry seasons from 2003 to 2004. The developed model was compared with the results from the existing rating curve at T/M gage stations, and was used for runoff analyses. Evaluating the developed river discharge estimation program, it was applied during 1983-2004 that base flow separation method and RRFS (Rainfall Runoff Forecasting System) which is based on SSARR (Streamflow Synthesis And Resevoir Regulation). The result presents the stage-discharge curve creator range at the Gong-ju is overestimated by approximately $10-20\%$, especially at the low stage. It is attributed to the hydraulic characteristics at the study. The discharge simulated by the RRFS and base flow separation, which is calibrated using the measurement at the early spring and late fall season during relatively d]v season, shows the least errors. The coefficient of roughness at Gongju station varied with the high and low water level.

Real-time Hydrologic Monitoring at Agricultural Small Watershed (실시간 계측기기를 이용한 농업소유역의 수문모니터링)

  • Seong, Choung-Hyun;Park, Seung-Woo;Kim, Sang-Min;Choi, Ja-Yoon
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.253-256
    • /
    • 2002
  • A hydrologic gauging network include a real-time measuring equipment was established within the Balhan watershed. Rainfall, stream water level, flow velocities were monitored at the six gauging stations. For stream flow gauging stations, the stage-discharge relationships were developed. The flow rate of the Balan watershed was 83.60% in 2001 and 48.79% in 2002.

  • PDF

Changes in Riparian Vegetation After Restoration in a Urban Stream, Yangjae Stream (도시 하천 양재천에서 복원후 하안식생의 변화)

  • Cho, Hyung-Jin;Woo, Hyoseop;Lee, Jinwon;Cho, Kang-Hyun
    • Journal of Wetlands Research
    • /
    • v.10 no.3
    • /
    • pp.111-124
    • /
    • 2008
  • The changes in flora and distribution and structure of vegetation were monitored for seven years at a restored reach of an urban stream, the Yangjae Stream, southeast of Seoul, Korea. In the restored reach, diverse kinds of the close-to-nature stream restoration techniques were adapted and implemented in the winter of 1998-1999. The species numbers and diversity indices of riparian plants at the restored reach were higher than those at the unrestored reach seven years after the restoration implementation. But plant diversity was decreased from the early restoration stage of 1999 - 2001 to seven years after the implementation. The dominant species changed from a ruderal annual, Humulus japonicus, to a perennial, Phragmites australis. The floral structure was distinctly different between in the early stage and seven years later on the results of principal component analysis (PCA) because of decreasing in numbers of exotic or ruderal species and planted or introduced plants in newly disturbed habitats. The distribution areas of communities of Humulus japonicus and Erigeron annuus were decreased and those of communities Phragmites australis and Miscanthus sacchariflorus were increased after the restoration implementation. The results of detrended correspondence analysis (DCA) of plant communities revealed that the community structure were changed from the disturbed vegetations to the stable and natural vegetation after the restoration implementation. Total seven species of willows were found at the restored reach, of which two species were planted and the others were naturally introduced. The monitoring results showed that the stream ecosystem of the study reach were successfully recovered in flora and vegetation and could be used as a model site for the stream restoration in urban streams.

  • PDF

Effects of flow variation in the first stage nozzle on the performance of a partial arc admission in a steam turbine (증기터빈 1단 노즐의 조속현상이 터빈성능에 미치는 영향)

  • Yoon, In-Soo;Lee, Tae-Gu;Moon, Seung-Jae;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.4 no.3
    • /
    • pp.60-65
    • /
    • 2008
  • Power plant industry has been developed at high-capacity, high-technology, and innovation. Steam turbine became the most useful equipment that dominate more than 50% of all the world electricity production. And developed new materials of the turbine blade and extended length of the turbine last blade brought reform in steam turbine performance upgrade. In this paper, when do partial load driving in high-capacity steam turbine, optimum driving method found whether there is something. In operating steam turbine, there is a lot of loss from secondary wake and throttle of the 1st stage nozzle by the biggest leading factor that load fluctuation affects in high-pressure steam turbine performance. Effect of internal efficiency by 1 stage nozzle is the biggest here, but here fluid flow and flow analysis were not yet examined closely definitely. So, Analyzed design data and acceptance performance test result to applying subcritical pressure drum type 560 MW, supercritical-pressure once through type 500 MW, and 800 MW steam turbines actually. In conclusion, at partial load driving, partial arc admission(PAA) is more efficient than full arc admission(FAA) efficiency. This is judged by because increase being proportional with gross energy of stream that is pressure - available energy if pressure of stream that is flowed in to the turbine increases, available energy becomes maximum and turbine efficiency improves. Therefore, turbine performance is that preview that first stage performance fell if decline is serious in partial load because first stage performance changes according to load.

  • PDF

Effect of Flood Stage by Hydraulic Factors in Han River (수리학적 인자에 의한 한강에서의 홍수위 영향 분석)

  • Lee, Eul-Rae;Kim, Won;Kim, Sang-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.2
    • /
    • pp.121-131
    • /
    • 2005
  • In this study, a flood routing model is used for analyzing change of flood stage induced by various factors. The results by using the past cross section measurement data showed the minimum error in case of accurate measurement of cross section as well as reasonable boundary condition of model. In analyzing the rise of flood stage of main stream considering Inflow magnitude of tributary, it showed that the larger the flow magnitude is, the smaller the variance of stage is. The results of analysis in the tidal effect at Wolgot are that the tidal effect influence the stage profile into upstream in case of normal discharge of main stream and tributary but doesn't influence it even with maximum flood tide in case of project flood. Finally, when the various hydraulic factors are considered in numerical analysis, more systematic and realistic flood forecast system is able to be performed.

RAINFALL AND RUNOFF VARIATION ANALYSIS FOR WATER RESOURCES MANAGEMENT STRATEGIES

  • Sang-man;Heon, Joo-;Jong-ho;Kum-young
    • Water Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.111-121
    • /
    • 2004
  • For the long-term strategic water resources planning, forecasting the future streamflow change is important to meet the demand of a growing society. The streamflow variation to the decade-long precipitation was investigated for the two major stage gauging stations in Korea. Precipitation and runoff characteristics have been analyzed at Yongwol stream stage in the Han River as well as Sutong stream stage in the Kum River for the future water resources management strategies. Monte Carlo method has been applied to estimate the future precipitation and runoff. Based on the trend line of 10-year moving average of runoff depth for the historical runoff records, the relation between runoff and the time variation was examined in more detail using regression analysis. This study showed that the surface flows have been significantly decreased while precipitation has been stable in these basins. Decreasing in runoff reflects the regional watershed characteristics such as forest cover changes. The findings of this study could contribute to the planning and development for the efficient water resources utilization.

  • PDF

A transcode scheduling technique to reduce early-stage delay time in playing multimedia in mobile terminals (이동 단말기에서 멀티미디어 연출시 최초 재생 지연시간을 줄이기 위한 트랜스코드 스케줄링 기법)

  • Hong, Maria;Yoon, Joon-Sung;Lim, Young-Hwan
    • The KIPS Transactions:PartB
    • /
    • v.10B no.6
    • /
    • pp.695-704
    • /
    • 2003
  • This paper proposes a new scheduling technique to play multimedia data streams in mobile terminals. The paper explores the characteristics of multimedia data streams , firstly. On basis of these characteristics, selection of specific data stream can be possible as well as transcoding protest. Our approach aims at reducing the early-stage delay time more effectively since it makes possible to select and transcodes some specific streams by employing a selection policy rather than transcoding all streams in the playing process Thus, this paper suggests a stream selection policy for the transcoding based on EPOB (End Point of Over Bandwidth). It aims to lower the required bandwidth of multimedia streams than the network bandwidth level and also to minimize early-stage delay time for multimedia streams, which is to be played in mobile terminals.

Analysis of hydrologic chracterustucs for Milyang river basin with a GIS (GIS를 이용한 밀양강 유역의 지형학적 특성 분석)

  • 유승근;최성규;문상원
    • Spatial Information Research
    • /
    • v.10 no.1
    • /
    • pp.107-122
    • /
    • 2002
  • Hydrological characteristics would be utilized to apply such as hydrologic modelling or basin management. This study is to extract hydrological characteristics through DEM and stream network analysis using a hydrologic unit map and digital topographic map in Milyang river basin. OEM and stream network was generated from digital topographic map. Especially stream network was allowed direction, stream order, and topology. As a result of the study, it shows that Milyang river has been changing geologically mature stage into old phase and the landform of Milyang river correspond to Horton-Strahler's law on morphology of stream. This methodology can be applicable to other areas related to hydrological characteristics with vector data.

  • PDF

Comparison of Flood Discharge and Velocity Measurements in a Mountain Stream Using Electromagnetic Wave and Surface Image (전자파와 수표면 영상을 이용한 산지하천 홍수유량 및 유속 계측 비교 연구)

  • Yang, Sung-Kee;Kim, Dong-Su;Yu, Kwon-Kyu;Kang, Meyong-Su;Jung, Woo-Yul;Lee, Jun-Ho;Kim, Yong-Seok;You, Ho-Jun
    • Journal of Environmental Science International
    • /
    • v.21 no.6
    • /
    • pp.739-747
    • /
    • 2012
  • Due to the difficulties for measuring flood discharge in the dangerous field conditions, conventional instruments with relatively low accuracy such as float still have been widely utilized for the field survey. It is also limited to use simple stage-discharge relationship for assessment of the flood discharge, since the stage-discharge relationship during the flood becomes complicated loop shape. In recent years, various non-intrusive velocity measurement techniques such as electromagnetic wave or surface images have been developed, which is quite adequate for the flood discharge measurements. However, these new non-intrusive techniques have little tested in the flood condition, though they promised efficiency and accuracy. Throughout the field observations, we evaluated the validity of these techniques by comparing discharge and velocity measurements acquired concurrently during the flood in a mountain stream. As a result, the flood discharge measurements between electromagnetic wave and surface image processing techniques showed high positive relationship, but velocities did not matched very well particularly for the high current speed more 3 m/s. Therefore, it should be noted here that special cares are required when the velocity measurements by those two different techniques are used, for instance, for the validation of the numerical models. In addition, authors assured that, for the more accurate flood discharge measurements, velocity observation as well as stage height is strongly necessary owing that the unsteady flow occurs during the flood.

A development of rating-curve using Bayesian Multi-Segmented model (Bayesian 기반 Multi-Segmented 곡선식을 활용한 수위-유량 곡선의 불확실성 분석)

  • Kim, Jin-Young;Kim, Jin-Guk;Lee, Jae Chul;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.3
    • /
    • pp.253-262
    • /
    • 2016
  • A Rating curve is a regression equation of discharge versus stage for a given point on a stream where the stream discharge is measured across the stream channel with a stage and discharge measurement. The curve is generally used to calculate discharge based on the stage. However, the existing approach showed problems in terms of estimating uncertainty associated with regression parameters including the separation parameter for low and high flow. In this regard, this study aimed to develop a new method for the aforementioned problems based on Bayesian approach, which can better estimate the parameter and its uncertainty. In addition, this study used a Bayesian Multi-Segmented (Bayesian M-S) model which is provided a comparison between the existing and proposed scheme. The proposed model showed better results for the parameter estimation than the existing approach, and provided better performance in terms of estimating uncertainty range.