• 제목/요약/키워드: strapdown inertial navigation

검색결과 72건 처리시간 0.019초

스트랩다운 관성항법 시스템을 위한 데이타 취득 시스템의 구성 (Design of data acquisition system for strapdown inertial navigation system)

  • 조현진;김용관;정연태;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.33-38
    • /
    • 1989
  • This paper is about construction of Data Acquisition System for Gyro-System which obtains the information such as position, velocity, acceleration and attitude etc of Dynamic Vehicle System. We made up the Data Acquisition System using IBM-PC and in connection with CYBER 180-830 based on rate table, controller and IEEE 488 Interface etc.

  • PDF

Attitude Determination GPS/INS Integration System Design Using Triple Difference Technique

  • Oh, Sang-Heon;Hwang, Dong-Hwan;Park, Chan-Sik;Lee, Sang-Jeong
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권4호
    • /
    • pp.615-625
    • /
    • 2012
  • GPS attitude outputs or carrier phase observables can be effectively utilized to compensate the attitude error of the strapdown inertial navigation system. However, when the integer ambiguity is not correctly resolved and/or a cycle slip occurs, an erroneous GPS output can be obtained. If the erroneous GPS output is applied to the attitude determination GPS/INS (ADGPS/INS) integrated navigation system, the performance of the system can be degraded. This paper proposes an ADGPS/INS integration system using the triple difference carrier phase observables. The proposed integration system contains a cycle slip detection algorithm, in which the inertial information is combined. Computer simulations and flight test were performed to verify effectiveness of the proposed navigation system. Results show that the proposed system gives an accurate and reliable navigation solution even when the integer ambiguity is not correctly resolved and the cycle slip occurs.

스트랩다운 관성항법시스템의 초기정렬 알고리즘 구현 (Implementation of an Initial Alignment Algorithm for a Stapdown Inertial Navigation system)

  • 김종혁;문승욱;이시호;김세환;황동환;이상정;나성웅
    • 제어로봇시스템학회논문지
    • /
    • 제6권2호
    • /
    • pp.138-145
    • /
    • 2000
  • In this paper an initial alignment algorithm for a strapdown inertial navigation system is implemented using a RISC CPU board. The algorithm computes roll pitch and yaw angles of the direction cosine matrix utilizing measured components of the specific force and earth rate when the navigation system is stationary. The coarse alignment algorithm is performed first and then the fine alignment algorithm containing a 3rd-order gyrocompass loop follows. The experimental set consists of an IMU a CPU board and a monitoring system Experimental results show that the implemented algorithm can be utilized in navigation systems.

  • PDF

스트랩다운 관성항법시스템의 주행 중 정렬을 위한 강인 관측기 구성 (Robust Observer Design for SDINS In-Flight Alignment)

  • 유명종;이장규;박찬국;심덕선
    • 제어로봇시스템학회논문지
    • /
    • 제7권8호
    • /
    • pp.703-710
    • /
    • 2001
  • The nonlinear observers are proposed for a nonlinear system. To improve the characteristics such as stability, convergence, and $H^{\infty}$ filter performance criterion, we utilize an $H^{\infty}$ filter Riccati equation or a modified $H^{\infty}$ filter Riccati equation with a freedom parameter. Using the Lyapunov function method, the characteristics of the observers are analyzed. Then the in-flight alignment for a strapdown inertial navigation system(SDINS) is designed using the proposed observer. And the additive quaternion error model is especially used to reduce the uncertainty of the SDINS error model. Simulation results show that the observer with the modified $H^{\infty}$ filter Riccati equation effectively improves the performance of the in-flight alignment.

  • PDF

동조자이로스코프를 이용한 스트랩다운 관성합법장치의 설계및 제작 (Design and fabrication of a SDINS utilizing DTC)

  • 김종웅;백승철;이광원;안영석;이허수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국내학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.643-648
    • /
    • 1988
  • A strapdown inertial navigation system fabrication utilizing dynamically tuned gyroscope was finished as a first stage development. So it's design, fabrication and tests are reported. Although this system lacks in accuracy compared with the cimballed system, factors such as low cost, small size and lightness make it useable in wide range of applications. The initial cost for investment is relatively cheap, and so it is best suitable for local development in various kind of inertial navigation system. Since all of the locally used systems are imported and even with it's close relation to the military, foreign technical transfer is practically non-existent. The independent local development of such system at a time of domestic initation in aerospace and defense industry, can be seen as a significant milestone in the advancement of the inertial navigaion system field.

  • PDF

New Guidance Filter Structure for Homing Missiles with Strapdown IIR Seeker

  • Kim, Tae-Hun;Kim, Jong-Han;Kim, Philsung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권4호
    • /
    • pp.757-766
    • /
    • 2017
  • For implementing the proportional navigation guidance law on passive homing missiles equipped with strapdown imaging infrared seekers, the line-of-sight angles and rates with respect to the inertial frame should be estimated by carefully handling the parasitic instability effect due to the seeker's latency. By introducing a new state vector representation along with the Pade approximation for compensating the time-delay of the seeker, this paper proposes a new guidance filter structure, stochastic dynamic models and measurement equations, in three-dimensional homing problem. Then, it derives the line-of-sight angle and rate estimator in general two-dimensional engagement by applying the extended Kalman filter to the proposed structure. The estimation performance and the characteristics of the proposed filter were evaluated via a series of numerical experiments.

삼중 차분 기법을 이용한 AGPS/INS 통합 항법 시스템 설계 (The AGPS/INS Integrated Navigation System Design Using Triple Difference Technique)

  • 오상헌;박찬식;이상정;황동환
    • 제어로봇시스템학회논문지
    • /
    • 제9권9호
    • /
    • pp.736-744
    • /
    • 2003
  • The GPS attitude output or carrier phase observables can be effectively utilized to compensate the attitude error of the strapdown inertial navigation system. However, when the integer ambiguity is not correctly resolved and/or a cycle slip occurs, an erroneous GPS output can be obtained. If the erroneous GPS information is directly applied to the AGPS/INS integration system, the performance of the system can be rapidly degraded. This paper proposes an AGPS/INS integration system using the triple difference carrier phase observables. The proposed integration system contains a cycle slip detection algorithm, in which inertial information is combined. Computer simulations and van test were performed to verify the proposed integration system. The results show that the proposed system gives an accurate and reliable navigation solution even when the integer ambiguity is not correct and the cycle slip occurs.

A New Approach for SINS Stationary Self-alignment Based on IMU Measurement

  • Zhou, Jiangbin;Yuan, Jianping;Yue, Xiaokui
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
    • /
    • pp.355-359
    • /
    • 2006
  • For the poor observability of azimuth misalignment angle and east gyro drift rate of the traditional initial alignment, a bran-new SINS stationary fast self-alignment approach is proposed. By means of analyzing the characteristic of the strapdown inertial navigation system (SINS) stationary alignment seriously, the new approach takes full advantage of the specific force and angular velocity information given by inertial measurement unit (IMU) instead of the mechanization of SINS. Firstly, coarse alignment algorithm is presented. Secondly, a new fine alignment model for SINS stationary self-alignment is derived, and the observability of the model is analysed. Then, a modified Sage-Husa adaptive Kalman filter is introduced to estimate the misalignment angles. Finally, some computer simulation results illustrate the efficiency of the new approach and its advantages, such as higher alignment accuracy, shorter alignment time, more self-contained and less calculation.

  • PDF

적응형 시간지연 보상을 통한 관성항법장치 급속초기정렬기법 (Rapid Initial Alignment Method of Inertial Navigation System Using Adaptive Time Delay Compensation)

  • 이형섭
    • 전기학회논문지
    • /
    • 제67권3호
    • /
    • pp.433-439
    • /
    • 2018
  • In this paper, a SDINS(strapdown inertial navigation system) rapid initial alignment technique with adaptive time delay compensation is proposed. The proposed method consists of two steps. In first step, misalignment and data latency are estimated by conducting pre-transfer alignment. Then, hybrid alignment is designed to rapidly find the misalignment changes induced by pyro-shock. To improve the performance of hybrid alignment, adaptive time delay compensation method is suggested. We verify the performance improvement of the proposed alignment scheme comparing with the conventional transfer alignment method by van test. The test result shows that the proposed alignment technique improves alignment performance.

SDINS에서 의사 자이로 바이어스 보상 기법 (Compensation of Pseudo Gyro Bias in SDINS)

  • 박정민
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제13권2호
    • /
    • pp.179-187
    • /
    • 2024
  • The performance of a Strapdown Inertial Navigation System (SDINS) relies heavily on the accuracy of sensor error calibration. Systematic calibration is usually employed when only a 2-axis turntable is available. For systematic calibration, the body frame is commonly defined with respect to sensor axes for ease of computation. The drawback of this approach is that sensor axes may undergo time-varying deflection under temperature change, causing pseudo gyro bias. The effect of pseudo gyro bias on navigation performance is negligible for low grade navigation systems. However, for higher grade systems undergoing rapid temperature change, the error is no longer negligible. This paper describes in detail conditions leading to the presence of pseudo gyro bias, and proposes two techniques for mitigating the error. Experimental results show that applying these techniques improves navigation performance for precision SDINS, especially under rapid temperature change.