• Title/Summary/Keyword: strain data

Search Result 2,173, Processing Time 0.026 seconds

Deep learning classification of transient noises using LIGOs auxiliary channel data

  • Oh, SangHoon;Kim, Whansun;Son, Edwin J.;Kim, Young-Min
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.74.2-75
    • /
    • 2021
  • We demonstrate that a deep learning classifier that only uses to gravitational wave (GW) detectors auxiliary channel data can distinguish various types of non-Gaussian noise transients (glitches) with significant accuracy, i.e., ≳ 80%. The classifier is implemented using the multi-scale neural networks (MSNN) with PyTorch. The glitches appearing in the GW strain data have been one of the main obstacles that degrade the sensitivity of the gravitational detectors, consequently hindering the detection and parameterization of the GW signals. Numerous efforts have been devoted to tracking down their origins and to mitigating them. However, there remain many glitches of which origins are not unveiled. We apply the MSNN classifier to the auxiliary channel data corresponding to publicly available GravitySpy glitch samples of LIGO O1 run without using GW strain data. Investigation of the auxiliary channel data of the segments that coincide to the glitches in the GW strain channel is particularly useful for finding the noise sources, because they record physical and environmental conditions and the status of each part of the detector. By only using the auxiliary channel data, this classifier can provide us with the independent view on the data quality and potentially gives us hints to the origins of the glitches, when using the explainable AI technique such as Layer-wise Relevance Propagation or GradCAM.

  • PDF

Formulations of Job Strain and Psychological Distress: A Four-year Longitudinal Study in Japan

  • Mayumi Saiki;Timothy A. Matthews;Norito Kawakami;Wendie Robbins;Jian Li
    • Safety and Health at Work
    • /
    • v.15 no.1
    • /
    • pp.59-65
    • /
    • 2024
  • Background: Different job strain formulations based on the Job Demand-Control model have been developed. This study evaluated longitudinal associations between job strain and psychological distress and whether associations were influenced by six formulations of job strain, including quadrant (original and simplified), subtraction, quotient, logarithm quotient, and quartile based on quotient, in randomly selected Japanese workers. Methods: Data were from waves I and II of the Survey of Midlife in Japan (MIDJA), with a 4-year followup period. The study sample consisted of 412 participants working at baseline and had complete data on variables of interest. Associations between job strain at baseline and psychological distress at follow-up were assessed via multivariable linear regression, and results were expressed as β coefficients and 95% confidence intervals including R2 and Akaike information criterion (AIC) evaluation. Results: Crude models revealed that job strain formulations explained 6.93-10.30% of variance. The AIC ranged from 1475.87 to 1489.12. After accounting for sociodemographic and behavioral factors and psychological distress at baseline, fully-adjusted models indicated significant associations between all job strain formulations at baseline and psychological distress at follow-up: original quadrant (β: 1.16, 95% CI: 0.12, 2.21), simplified quadrant (β: 1.01, 95% CI: 0.18, 1.85), subtraction (β: 0.39, 95% CI: 0.09, 0.70), quotient (β: 0.37, 95% CI: 0.08, 0.67), logarithm quotient (β: 0.42, 95% CI: 0.12, 0.72), and quartile based on quotient (β: 1.22, 95% CI: 0.36, 2.08). Conclusion: Six job strain formulations showed robust predictive power regarding psychological distress over 4 years among Japanese workers.

Wearable Textile Strain Sensors (웨어러블 텍스타일 스트레인 센서 리뷰)

  • Roh, Jung-Sim
    • Fashion & Textile Research Journal
    • /
    • v.18 no.6
    • /
    • pp.733-745
    • /
    • 2016
  • This paper provides a review of wearable textile strain sensors that can measure the deformation of the body surface according to the movements of the wearer. In previous studies, the requirements of textile strain sensors, materials and fabrication methods, as well as the principle of the strain sensing according to sensor structures were understood; furthermore, the factors that affect the sensing performance were critically reviewed and application studies were examined. Textile strain sensors should be able to show piezoresistive effects with consistent resistance-extension in response to the extensional deformations that are repeated when they are worn. Textile strain sensors with piezoresistivity are typically made using conductive yarn knit structures or carbon-based fillers or conducting polymer filler composite materials. For the accuracy and reliability of textile strain sensors, fabrication technologies that would minimize deformation hysteresis should be developed and processes to complement and analyze sensing results based on accurate understanding of the sensors' resistance-strain behavior are necessary. Since light-weighted, flexible, and highly elastic textile strain sensors can be worn by users without any inconvenience so that to enable the users to continuously collect data related to body movements, textile strain sensors are expected to become the core of human interface technologies with a wide range of applications in diverse areas.

Measurements of Thermal Gradient and Thermal Strain of Mortar Specimens Using Fiber Bragg Grating Sensor (광섬유 격자 센서를 이용한 모르타르시편의 온도구배 및 열 변형 측정)

  • Rhim, Hong-Chul;Lee, Eun-Joo;Chun, Heung-Jae;Park, Dong-Nyuck
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.133-138
    • /
    • 2003
  • As concrete structures are heated, thermal strain can be developed. Because of the boundary conditions, the thermal stress may be arisen. Thermal strain and temperature were measured simultaneously using an optical fiber sensor. Fiber Bragg Grating Sensor(FBG sensor) was used in the measurement. Because it can measure the strains more than two points with one line, it was possible to measure both thermal strain and temperature with one line. To compare data measured by FBG sensor, strain and temperature were measured using strain gauge and thermocouple. The FBG sensor could measure the strain under the temperature greater than $60^{\circ}C$ but strain gauge couldn't. Both the FBG temperature sensor and thermocouple could measure the temperature and the results are related each other linearly.

Parental strain, mastery, sex role attitude, and dyadic adjustment after the transition to parenthood in the dual earner family (취업부부의 부모기 전이후 부모로서의 긴장감, 지배감, 성역할태도와 결혼적응)

  • 고선주
    • Journal of the Korean Home Economics Association
    • /
    • v.35 no.5
    • /
    • pp.17-32
    • /
    • 1997
  • The purpose of this study is to explore parental strain, mastery, sex role attitude and dyadic adjustment after the transition to parenthood in dual earner family. Using couple data from a sample of 284 dual earner couple, pair t-test, multiple regression analysis, one was ANOVA was used. Major findings were as follows. 1) There were differences between wives and husbands in dyadic adjustment, physical strain, mastery, sex role attitude. Specially, couples experience more emotional strain than physical strain, and wives experience more parental strain than husbands. 2) Couple's parental strain is considered personal attribution rather than family one, but mastery is different. 3) Couple's psychological variables have an effect on the dyadic adjustment sores, especially husband's sex role attitude influences own dyadic adjustment and wife's dyadic adjustment. Wife's mastery also own dyadic adjustment and husband's dyadic adujstment.

  • PDF

Modeling and Analysis of Strain Localization in Concrete (콘크리트 변형률국소화 모형 및 해석)

  • 송하원;김인순;나웅진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.375-382
    • /
    • 1997
  • In this paper, a unified micromechanics-based model which can be applied to both tensile and compressive member of concrete is suggested and to the analysis of the strain-localization in concrete. From the comparison of the analysis results obtained from different size of concrete members with experimental data, it id shown that the model in this paper can be applied to the analysis of the strain localization concrete. For the finite element analysis of the strain-localization in concrete, the localized zone in concrete under strain localization is modeled as ad plastic model which can consider nonlinear strain softening and the non-localized zone is modeled as a nonlinear elastic-damage model. Using developed finite element analysis program. strain localization behaviors under compressive force for the different sizes of concrete having different sizes of the localized zone are simulated.

  • PDF

Transient Creep Strain of Ultra High Strength Concrete with Heating and Loading (가열 및 하중조건에 따른 초고강도콘크리트의 과도변형)

  • Choe, Gyeong-Choel;Kim, Gyu-Yong;Yoon, Min-Ho;Lee, Young-Wook;Hwang, Ui-Chul;Yoo, Jae-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.59-60
    • /
    • 2015
  • In this study, stress-strain, thermal expansion strain, total strain and high temperature creep strain of ultra-high-strength concrete with compressive strengths of 80, 130, and 180MPa were experimentally evaluated considering elevated temperature and loading condition. Also, transient creep strain has been calculated by using the results of experiment. Experimental coefficient K was proposed with application of non-steady state creep model. It is considered that the experimental results of this study could be baseline data for deformation behavior analysis of ultra-high-strength concrete.

  • PDF

Stress-strain behavior of geopolymer under uniaxial compression

  • Yadollahi, Mehrzad Mohabbi;Benli, Ahmet
    • Computers and Concrete
    • /
    • v.20 no.4
    • /
    • pp.381-389
    • /
    • 2017
  • The various types of structural materials that are available in the construction industry nowadays make it necessary to predict their stress-strain behavior. Geopolymer are alternatives for ordinary Portland cement concrete that are made from pozzolans activation. Due to relatively new material, many mechanical specifications of geopolymer are still not yet discovered. In this study, stress-strain behavior has been provided from experiments for unconfined geopolymers. Modulus of Elasticity and stress-strain behavior are critical requirements at analysis process and knowing complete stress-strain curve facilitates structural behavior assessment at nonlinear analysis for structures that have built with geopolymers. This study intends to investigate stress-strain behavior and modulus of elasticity from experimental data that belongs for geopolymers varying in fineness and mix design and curing method. For the sake of behavior determination, 54 types of geopolymer are used. Similar mix proportions are used for samples productions that have different fineness and curing approach. The results indicated that the compressive strength ranges between 7.7 MPa and 43.9 MPa at the age of 28 days curing.

The Measurement of Real Deformation Behavior in Pilot LNG Storage Tank Membrane by using Strain Gage (스트레인 게이지를 이용한 Pilot LNG 저장탱크 멤브레인 실 변형 거동 측정)

  • Kim, Young-Kyun;Yoon, Ihn-Soo;Oh, Byoung-Taek;Hong, Seong-Ho;Yang, Young-Myung
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.108-113
    • /
    • 2004
  • Korea Gas Corp. has developed the design technology of the LNG storage tank. The membrane to be applied inside of the LNG storage tank is provided with corrugations to absorb thermal contraction and expansion caused by LNG temperature changes. It is very important to measure their thermal strains under LNG temperatures by analytical and experimental stress analysis of the membrane. We have developed a stress measurement system using strain gages and measured the strain during cooldown and storing the LNG. We also analyzed the measured data by comparison with the FEM data. On the basis of these results, we could design and assure the application of the Kogas Membrane to large scale LNG storage.

  • PDF

Modelling of Load-Strain Curves for CFT Stub Columns (각형 CFT 단주의 하중-변형도 관계 모델)

  • Kang, Hyun Sik;Yoo, Yeong Chan;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.1 s.44
    • /
    • pp.9-16
    • /
    • 2000
  • The model of load-strain relations for CFT stub columns subjected to centrally compressive axial load is shown in this paper. The modified model of concrete and steel is obtained by using the experimental data and the formulas of that is based on the foreign researcher's result. The purpose of this paper is to suggest the basic data for evaluating the behavior of CFT stub columns to be variable to the strength of concrete and steel.

  • PDF