Browse > Article
http://dx.doi.org/10.5805/SFTI.2016.18.6.733

Wearable Textile Strain Sensors  

Roh, Jung-Sim (Dept. of Clothing & Textiles, Sangmyung Univerity)
Publication Information
Fashion & Textile Research Journal / v.18, no.6, 2016 , pp. 733-745 More about this Journal
Abstract
This paper provides a review of wearable textile strain sensors that can measure the deformation of the body surface according to the movements of the wearer. In previous studies, the requirements of textile strain sensors, materials and fabrication methods, as well as the principle of the strain sensing according to sensor structures were understood; furthermore, the factors that affect the sensing performance were critically reviewed and application studies were examined. Textile strain sensors should be able to show piezoresistive effects with consistent resistance-extension in response to the extensional deformations that are repeated when they are worn. Textile strain sensors with piezoresistivity are typically made using conductive yarn knit structures or carbon-based fillers or conducting polymer filler composite materials. For the accuracy and reliability of textile strain sensors, fabrication technologies that would minimize deformation hysteresis should be developed and processes to complement and analyze sensing results based on accurate understanding of the sensors' resistance-strain behavior are necessary. Since light-weighted, flexible, and highly elastic textile strain sensors can be worn by users without any inconvenience so that to enable the users to continuously collect data related to body movements, textile strain sensors are expected to become the core of human interface technologies with a wide range of applications in diverse areas.
Keywords
textile strain sensors; wearable sensors; textile interfaces; smart textiles; e-textile;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bartlett, P. N., & Lingchung, S. K. (1989). Conducting polymer gas sensors part II: response of polypyrrole to methanol vapour. Sensors and Actuators, 19, 141-150. doi:10.1016/0250-6874(89)80127-1   DOI
2 Bilotti, E., Zhang, R., Deng, H., Baxendale, M., & Peijs, T. (2010). Fabrication and property prediction of conductive and strain sensing TPU/CNT nanocomposite fibres. Journal of Materials Chemistry, 20(42), 9449-9455. doi:10.1039/C0JM01827A   DOI
3 Borsenberger, P. M., & Bassler, H. (1991). Concerning the role of dipolar disorder on charge transport in molecularly doped polymers. The Journal of Chemical Physics, 95(7), 5327-5331. doi:10.1063/1.461646   DOI
4 Calvert, P., Duggal, D., Patra, P., Agrawal, A. P., & Sawhney, A. (2008). Conducting polymer and conducting composite strain sensors on textiles. Molecular Crystals and Liquid Crystals, 484(1), 291-657. doi:10.1080/15421400801904690   DOI
5 Campbell, T. E., Munro, B. J., Wallace, G. G., & Steele, J. R. (2007). Can fabric sensors monitor breast motion?. Journal of Biomechanics, 40(13), 3056-3059. doi:10.1016/j.jbiomech.2007.01.020   DOI
6 Catrysse, M., Puers, R., Hertleer, C., Van Langenhove, L., Van Egmond, H., & Matthys, D. (2004). Towards the integration of textile sensors in a wireless monitoring suit. Sensors and Actuators A: Physical, 114(2), 302-311. doi:10.1016/j.sna.2003.10.071   DOI
7 Cochrane, C., Koncar, V., Lewandowski, M., & Dufour, C. (2007). Design and development of a flexible strain sensor for textile structures based on a conductive polymer composite. Sensors, 7(4), 473-492. doi:10.3390/s7040473   DOI
8 Daoud, W. A., Xin, J. H., & Szeto, Y. S. (2005). Polyethylenedioxythiophene coatings for humidity, temperature and strain sensing polyamide fibers. Sensors and Actuators B: Chemical, 109(2), 329-333. doi:10.1016/j.snb.2004.12.067   DOI
9 Li, Y., Cheng, X. Y., Leung, M. Y., Tsang, J., Tao, X. M., & Yuen, M. C. W. (2005). A flexible strain sensor from polypyrrole-coated fabrics. Synthetic Metals, 155(1), 89-94. doi:10.1016/j.synthmet.2005.06.008   DOI
10 Li, Q., Kim, N. H., Yoo, G. H., & Lee, J. H. (2009). Positive temperature coefficient characteristic and structure of graphite nanofibers reinforced high density polyethylene/carbon black nanocomposites. Composites Part B: Engineering, 40(3), 218-224. doi:10.1016/j.compositesb.2008.11.002   DOI
11 Liu, L., Ye, X., Wu, K., Han, R., Zhou, Z., & Cui, T. (2009). Humidity sensitivity of multi-walled carbon nanotube networks deposited by dielectrophoresis. Sensors, 9(3), 1714-1721. doi:10.3390/s90301714   DOI
12 Lorussi, F., Rocchia, W., Scilingo, E. P., Tognetti, A., & De Rossi, D. (2004). Wearable, redundant fabric-based sensor arrays for reconstruction of body segment posture. IEEE Sensors Journal, 4(6), 807-818. doi:10.1109/JSEN.2004.837498   DOI
13 Mattmann, C., Amft, O., Harms, H., Troster, G., & Clemens, F. (2007). Recognizing upper body postures using textile strain sensors. In 2007 11th IEEE International Symposium on Wearable Computers (pp. 29-36). Boston, MA, USA, IEEE. doi:10.1109/ISWC.2007.4373773   DOI
14 Mattmann, C., Clemens, F., & Troster, G. (2008). Sensor for measuring strain in textile. Sensors, 8(6), 3719-3732. doi:10.3390/s8063719   DOI
15 Munro, B. J., Campbell, T. E., Wallace, G. G., & Steele, J. R. (2008). The intelligent knee sleeve: A wearable biofeedback device. Sensors and Actuators B: Chemical, 131(2), 541-547. doi:10.1016/j.snb.2007.12.041   DOI
16 Roh, J. S., & Kim, S. R. (2016). All-fabric intelligent temperature regulation system for smart clothing applications. Journal of Intelligent Material Systems and Structures, 27(9), 1165-1175. doi:10.1177/1045389X15585901.   DOI
17 Paradiso, R., Loriga, G., & Taccini, N. (2005). A wearable health care system based on knitted integrated sensors. Information Technology in Biomedicine, IEEE Transactions on, 9(3), 337-344. doi:10.1109/TITB.2005.854512   DOI
18 Pati, R., Zhang, Y., Nayak, S. K., & Ajayan, P. M. (2002). Effect of $H_2O$ adsorption on electron transport in a carbon nanotube. Applied Physics Letters, 81, 2638. doi:10.1063/1.1510969   DOI
19 Perc, B., Kuscer, D., Holc, J., Belavic, D., Jerlah, M., Svetec, D. G., & Kosec, M. (2009, September). Thick-film strain sensor on textile. In Proceeding of 45th International Conference on Microelectronics, Devices and Materials, pp. 9-11.
20 Ramanavicius, A., Ramanaviciene, A., & Malinauskas, A. (2006). Electrochemical sensors based on conducting polymer-polypyrrole. Electrochimica Acta, 51(27), 6025-6037. doi:10.1016/j.electacta.2005.11.052   DOI
21 Robert, C., Feller, J. F., & Castro, M. (2012). Sensing skin for strain monitoring made of PC-CNT conductive polymer nanocomposite sprayed layer by layer. ACS Applied Materials & Interfaces, 4(7), 3508-3516. doi:10.1021/am300594t   DOI
22 Scilingo, E. P., Lorussi, F., Mazzoldi, A., & De Rossi, D. (2003). Strain-sensing fabrics for wearable kinaesthetic-like systems. IEEE Sensors Journal, 3(4), 460-467. doi:10.1109/JSEN.2003.815771   DOI
23 Shyr, T. W., Shie, J. W., Jiang, C. H., & Li, J. J. (2014). A textile-based wearable sensing device designed for monitoring the flexion angle of elbow and knee movements. Sensors, 14(3), 4050-4059. doi:10.3390/s140304050   DOI
24 Wang, X., & Chung, D. D. L. (1995). Short-carbon-fiber-reinforced epoxy as a piezoresistive strain sensor. Smart Materials and Structures, 4(4), 363. doi:10.1088/0964-1726/4/4/017   DOI
25 Strazdiene, E., Blazevic, P., Vegys, A., & Dapkuniene, K. (2015). New tendencies of wearable electronics application in smart clothing. Electronics and Electrical Engineering, 73(1), 21-24.
26 Taccola, S., Greco, F., Zucca, A., Innocenti, C., de Julian Fernandez, C., Campo, G., Sangregorio, C., Mazzolai, B., & Mattoli, V. (2013). Characterization of free-standing PEDOT: PSS/iron oxide nanoparticle composite thin films and application as conformable humidity sensors. ACS Applied Materials & Interfaces, 5(13), 6324-6332. doi:10.1021/am4013775   DOI
27 Taya, M., Kim, W. J., & Ono, K. (1998). Piezoresistivity of a short fiber/elastomer matrix composite. Mechanics of Materials, 28(1), 53-59. doi:10.1016/S0167-6636(97)00064-1   DOI
28 Ueda, N., & Taya, M. (1986). Prediction of the electrical conductivity of two?dimensionally misoriented short fiber composites by a percolation model. Journal of Applied Physics, 60(1), 459-461. doi:10.1063/1.337778.   DOI
29 Wang, J., Long, H., Soltanian, S., Servati, P., & Ko, F. (2014). Electromechanical properties of knitted wearable sensors: Part 2-Parametric study and experimental verification. Textile Research Journal, 84(2), 200-213. doi:10.1177/0040517513490057.   DOI
30 Xiang, Z. D., Chen, T., Li, Z. M., & Bian, X. C. (2009). Negative temperature coefficient of resistivity in lightweight conductive carbon nanotube/polymer composites. Macromolecular Materials and Engineering, 294(2), 91-95. doi:10.1002/mame.200800273   DOI
31 Xiong, C., Zhou, Z., Xu, W., Hu, H., Zhang, Y., & Dong, L. (2005). Polyurethane/carbon black composites with high positive temperature coefficient and low critical transformation temperature. Carbon, 43(8), 1788-1792. doi:10.1016/j.carbon.2005.02.001   DOI
32 Yi, W., Wang, Y., Wang, G., & Tao, X. (2012). Investigation of carbon black/silicone elastomer/dimethylsilicone oil composites for flexible strain sensors. Polymer Testing, 31(5), 677-684. doi:10.1016/j.polymertesting.2012.03.006   DOI
33 Xue, P., Tao, X. M., Kwok, K. W., Leung, M. Y., & Yu, T. X. (2004). Electromechanical behavior of fibers coated with an electrically conductive polymer. Textile Research Journal, 74(10), 929-936. doi:10.1177/004051750407401013   DOI
34 Xue, P., Tao, X. M., & Tsang, H. Y. (2007). In situ SEM studies on strain sensing mechanisms of PPy-coated electrically conducting fabrics. Applied Surface Science, 253(7), 3387-3392. doi:10.1016/j.apsusc.2006.07.003   DOI
35 Yamada, T., Hayamizu, Y., Yamamoto, Y., Yomogida, Y., Izadi-Najafabadi, A., Futaba, D. N., & Hata, K. (2011). A stretchable carbon nanotube strain sensor for human-motion detection. Nature Nanotechnology, 6(5), 296-301. doi:10.1038/nnano.2011.36   DOI
36 Atalay, O., Kennon, W. R., & Husain, M. D. (2013). Textile-based weft knitted strain sensors: Effect of fabric parameters on sensor properties. Sensors, 13(8), 11114-11127. doi:10.3390/s130811114   DOI
37 Yu, H., Cao, T., Zhou, L., Gu, E., Yu, D., & Jiang, D. (2006). Layer-by-layer assembly and humidity sensitive behavior of poly (ethyleneimine)/multiwall carbon nanotube composite films. Sensors and Actuators B: Chemical, 119(2), 512-515. doi:10.1016/j.snb.2005.12.048   DOI
38 Zhang, H., Tao, X., Yu, T., & Wang, S. (2006). Conductive knitted fabric as large-strain gauge under high temperature. Sensors and Actuators A: Physical, 126(1), 129-140. doi:10.1016/j.sna.2005.10.026   DOI
39 Zhang, R., Deng, H., Valenca, R., Jin, J., Fu, Q., Bilotti, E., & Peijs, T. (2013). Strain sensing behaviour of elastomeric composite films containing carbon nanotubes under cyclic loading. Composites Science and Technology, 74, 1-5. doi:10.1016/j.compscitech.2012.09.016   DOI
40 Alexopoulos, N. D., Bartholome, C., Poulin, P., & Marioli-Riga, Z. (2010). Structural health monitoring of glass fiber reinforced composites using embedded carbon nanotube (CNT) fibers. Composites Science and Technology, 70(2), 260-271. doi:10.1016/j.compscitech.2009.10.017   DOI
41 Bae, S. H., Lee, Y., Sharma, B. K., Lee, H. J., Kim, J. H., & Ahn, J. H. (2013). Graphene-based transparent strain sensor. Carbon, 51, 236-242. doi:10.1016/j.carbon.2012.08.048   DOI
42 Balberg, I., & Binenbaum, N. (1987). Invariant properties of the percolation thresholds in the soft-core-hard-core transition. Physical Review A, 35(12), 5174. doi:org/10.1103/PhysRevA.35.5174   DOI
43 Barlow, D. H., Becker, R., Leitenberg, H., & Agras, W. S. (1970). A mechanical strain gauge for recording penile circumference change. Journal of Applied Behavior Analysis, 3(1), 73-76. doi:10.1901/jaba.1970.3-73   DOI
44 Kinkeldei, T., Zysset, C., Cherenack, K. H., & Troster, G. (2011). A textile integrated sensor system for monitoring humidity and temperature. In Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International (pp. 1156-1159). Beijing, China, IEEE. doi:10.1109/TRANSDUCERS.2011.5969238   DOI
45 Zhang, R., Deng, H., Valenca, R., Jin, J., Fu, Q., Bilotti, E., & Peijs, T. (2012). Carbon nanotube polymer coatings for textile yarns with good strain sensing capability. Sensors and Actuators A: Physical, 179, 83-91. doi:10.1016/j.sna.2012.03.029   DOI
46 Bashir, T., Ali, M., Cho, S. W., Persson, N. K., & Skrifvars, M. (2013). OCVD polymerization of PEDOT: Effect of pre-treatment steps on PEDOT-coated conductive fibers and a morphological study of PEDOT distribution on textile yarns. Polymers for Advanced Technologies, 24(2), 210-219. doi:10.1002/pat.3073   DOI
47 Bashir, T., Ali, M., Persson, N. K., Ramamoorthy, S. K., & Skrifvars, M. (2014). Stretch sensing properties of conductive knitted structures of PEDOT-coated viscose and polyester yarns. Textile Research Journal, 84(3), 323-334. doi:10.1177/0040517513494253   DOI
48 Giorgino, T., Tormene, P., Lorussi, F., De Rossi, D., & Quaglini, S. (2009). Sensor evaluation for wearable strain gauges in neurological rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 17(4), 409-415. doi:10.1109/TNSRE.2009.2019584   DOI
49 Kaiser, A. B., Flanagan, G. U., Stewart, D. M., & Beaglehole, D. (2001). Heterogeneous model for conduction in conducting polymers and carbon nanotubes. Synthetic Metals, 117(1), 67-73. doi:10.1016/S0379-6779(00)00540-3   DOI
50 Kim, Y. J., Cha, J. Y., Ham, H., Huh, H., So, D. S., & Kang, I. (2011). Preparation of piezoresistive nano smart hybrid material based on graphene. Current Applied Physics, 11(1), S350-S352. doi:10.1016/j.cap.2010.11.022   DOI
51 Kuş, M., & Okur, S. (2009). Electrical characterization of PEDOT: PSS beyond humidity saturation. Sensors and Actuators B: Chemical, 143(1), 177-181. doi:10.1016/j.snb.2009.08.055   DOI
52 Lee, J. H., Kim, S. H., Lee, J. J., Yang, D. J., Park, B. C., Ryu, S. H., & Park, I. K. (2014). A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection. Nanoscale, 6(20), 11932-11939. doi:10.1039/C4NR03295K   DOI
53 Li, X., Zhang, R., Yu, W., Wang, K., Wei, J., Wu, D., Cao, A., Li, Z., Cheng, Y., Zheng, Q., & Ruoff, R. S. (2012). Stretchable and highly sensitive graphene-on-polymer strain sensors. Scientific Reports, 2, 870. doi:10.1038/srep00870   DOI