• Title/Summary/Keyword: storage proteins

Search Result 250, Processing Time 0.027 seconds

A Study on the Mechanism of Insulin Sensitivity to Glucose Transport System: Distribution of Subcellular Fractions and Cytochalasin B Binding Proteins (인슐린의 포도당 이동 촉진 기전에 관한 연구 -세포내부 미세구조와 Cytochalasin B 결합단백질의 분포-)

  • Hah, Jong-Sik
    • The Korean Journal of Physiology
    • /
    • v.24 no.2
    • /
    • pp.331-344
    • /
    • 1990
  • What makes glucose transport function sensitive to insulin in one cell type such as adipocyte, and insensitive in another such as liver cells is unresolved question at this time. Recently it is known that insulin stimulates glucose transport in adipocytes largely by redistributing transporter from the storage pool that is included in a low density microsomal fraction to plasma membrane. Therefore, insulin sensitivity may depend upon the relative distribution of gluscose transporters between the plasma membrane and in an intracellular storage compartment. In hepatocytes, the subcellular distribution of glucose transporter is less well documented. It is thus possible that the apparent insensitivity of the hepatocyte system could be either due to lack of the constitutively maintained, intracellular storage pool of glucose transporter or lack of insulin-mediated transporter translocation mechanism in this cell. In this study, I examined if any intracellular glucose transporter pool exists in hepatocytes and this pool is affected by insulin. The results obtained summarized as followings: 1) Distribution of subcellular fractions of hepatocyte showed that there are $24.9{\pm}1.3%$ of plasma membrane, $36.9{\pm}1.7%$ of nucleus-mitochondria enriched fraction, $23.5{\pm}1.2%$ of lysosomal fraction, $9.6{\pm}1.0%$ of high density microsomal fraction and $4.9{\pm}0.5%$ of low density microsomal fraction. 2) In adipocyte, there were $29.9{\pm}2.6%$ of plasma membrane, $19.4{\pm}1.9%$ of nucleus-mitochondria enriched fraction, $26.7{\pm}1.8%$ of high density microsomal fraction and $23.9{\pm}2.1%$ of low density microsomal fraction. 3) Surface labelling of sodium borohydride revealed that plasma membrane contaminated to lysosomal fraction by $26.8{\pm}2.8%$, high density microsomal fraction by $8.3{\pm}1.3%$ and low density microsomal fraction by $1.7{\pm}0.4%$ respectively. 4) Cytochalasin B bound to all of subcellular fractions with a Kd of $1.0{\times}10^{-6}M$. 5) Photolabelling of cytochalasin B to subcellular fractions occurred on 45 K dalton protein band, a putative glucose transporter and D-glucose inhibited the photolabelling. 6) Insulin didn't affect on the distribution of subcellular fractions and translocation of intracellular glucose transporters of hepatocytes. 7) HEGT reconstituted into hepatocytes was largely associated with plasma membrane and very little was found in low density microsomal fraction which equals to the native glucose transporter distribution. Insulin didn't affect on the distribution of exogeneous glucose transporter in hepatocytes. From the above results it is concluded that insulin insensitivity of hepatocyte may due to lack of intracellular storage pool of glucose transporter and thus intracellular storage pool of glucose transporter is an essential feature of the insulin action.

  • PDF

Nitrogen Compounds of Korea Ginseng and their Physiological Significance

  • Park, Hoon;Cho, Byung-Goo;Lee, Mee-Kyoung
    • Proceedings of the Ginseng society Conference
    • /
    • 1990.06a
    • /
    • pp.175-189
    • /
    • 1990
  • Nitrogen compounds of Panax ginseng and their biological activities in plant and animal were reviewed. Major nitrogen compounds found in P. ginseng are free amino acids. Water solilble proteins, indouble proteins and peptides. Minor nitrogen compounds are dencichine. Glycolyroteins, amines, alkaloides, methoxy or alkyl pyrazine derivatives, free nucleosides and nucleic acid bases. 4-methyl-i-thiazoltethanol and pyroglutamic acid the contents of total nitrogen and protein in root Increased until 13 years old which was the highest age tinder investigation. Soluble protein content increased with the root weight and was higher in xylem pith than cortex-epidermis indicating the close relation with root growth. Arginine, which covered 58% of total free amino acids, may serve as storage nitrogen. Arginine seems to be changed into proline in rhizome. threonine in stem and again threonine and arginine in leaf. The greater the root weight the higher the polyamine stimulated Polyamine stimlllated the growth of root callus. Physiological roles of other minor nitrogen compounds are unknown although content is relatively high ((1.if) 6.w). Biochemical and pharmacological activities of some nitrogen compounds for animal were more investigated than physiological role there plant itself. Radiation and U.V protective function (heat stable protein). insulin-like activity in lipogenesis and livolysis (adenosine and pyroglutamic acid), depression of blood sugar content (glycopevtide). htmostatic and nellrotoxic activity (dencichine) and, sedative and hypnotic activity (4-methyl-i-thiazoleethanol) are reported. Heat stable protein increased with root age. The traditional quality criteria appear to be well in accordance with biological activities of nitrogen compounds. Chemical studies of nitrogen compounds seem relatively rare, probably due to difficulty of isolation, subsequently the investigations of biological activities are little.

  • PDF

Comparative Study on the Nutritional Value of Pidan and Salted Duck Egg

  • Ganesan, P.;Kaewmanee, T.;Benjakul, S.;Baharin, B.S.
    • Food Science of Animal Resources
    • /
    • v.34 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Pidan and salted duck eggs are of nutritional rich alternative duck egg products which are predominantly consumed in China, Thailand, South Korea and other Chinese migrated countries. Both eggs are rich in proteins, lipids, unsaturated fatty acids and minerals. A Pidan whole egg contains 13.1% of protein, 10.7% of fat, 2.25% of carbohydrate and 2.3% of ash, whereas the salted duck egg contains 14% of protein, 16.6% of fat, 4.1% of carbohydrate and 7.5% of ash. The fresh duck egg contains a range of 9.30-11.80% of protein, 11.40-13.52% of fat, 1.50-1.74% of sugar and 1.10-1.17% of ash. Proteins, lipids, and ash contents are found to be greatly enhanced during the pickling and salting process of pidan and salted duck eggs. However, the alkaline induced aggregation of pidan leads to degradation and subsequent generation of free peptides and amino acids. Very few amino acids are found to be lost during the pickling and storage. However, no such losses of amino acids are reported in salted duck eggs during the salting process of 14 d. Phospholipids and cholesterol contents are lower in pidan oil and salted duck egg yolk oil. Thus, the pidan and salted duck eggs are nutritionally rich alternatives of duck egg products which will benefit the human health during consumption.

Ontogeny and Characterization of Major Haemolymph Protein(MHP) in Helicoverpa assulta (담배나방 (Helicoverpa assulta)의 발생중 Major Haemolymph Protein(MHP)의 변화 및 특성)

  • 유종명;조시형;이형철
    • The Korean Journal of Zoology
    • /
    • v.39 no.3
    • /
    • pp.307-316
    • /
    • 1996
  • A persistent major haemolyruph protein (MHP) was confirmed, and its ontogeny and physicochemical charadedstics were investigated in Helicoverpa assulta. The MHP existed continually during larval-pupal-adult development, and its ontogeny was similar to that of total haemolymph protein concentration during development. Its content increased with larval growth, and kept to high level during pupal-adult development except for temporary decrease at the early pupal and adult stages. The MHP was purified by ammonium sulfate precipitation, gel filtration and ion exchange chromatography. The purified MHP was determined to be hexamer glycolipoprotein (pI 5.9, M.W. 414kDa) consisted of single type subunit (69kDa). Amino acid analysis suggested that the MHP contained a relatively high content of aromatic amino acids (18.27 mole % of tryptophan, 7.47 mole % of tyrosine and 6.51 mole % of phenylalanine) compared to storage proteins from other insects. Immunodiffusion test and electrophoretic analysis of the organ proteins (gut, fat body, and Malphigian tubule) suggested that the major haemolymph protein was present in the fat body.

  • PDF

Postnatal Ontogeny of Expression of Monocarboxylate Transporters(MCTs) and Two Regulatory Proteins, Basigin and Embigin, in The Epididymis of Male Rat (흰쥐의 부정소에서 Monocarboxylate Transporters(MCTs)와 조절 단백질, Basigin과 Embigin의 생후 발달 과정 동안 발현 양상)

  • Lee, K.H.
    • Journal of Animal Science and Technology
    • /
    • v.50 no.1
    • /
    • pp.45-56
    • /
    • 2008
  • In the present study, real-time PCR was performed to evaluated expression of several isoforms of monocarboxylate transporters(MCTs) and two known MCT regulatory proteins, basigin (Bsg) and embigin, in the epididymis of the male reproductive tract during postnatal development. In addition, ERα�-mediated regulation of MCT1 expression in the epididymis was determined with estrogen receptor(ER) α� knockout(α�ERKO) mice by immunohistochemistry. Results from the current study demonstrated differential expression of MCT isoform(MCT 1, 2, 3, 4, and 8), Bsg, and embigin mRNAs in rat epididymis according to postnatal age and epididymal region. In addition, immunohistochemical study of MCT1 revealed the limited localization of MCT1 at apical area of corpus and caudal epididymis. The present study also showed that expression of MCT1 was not directly regulated by ERα�. The findings from the current study suggest that MCTs would involve in establishing adequate microenvironment for sperm maturation and storage in the epididymis, eventually leading to maintenance of male fertility.

Food Characteristics of Olive Flounder Paralichthys olivaceus Roe Concentrates Prepared Using a Cook-dried Process (가열-건조처리로 제조한 넙치(Paralichthys olivaceus) 알 농축물의 식품 특성)

  • Kwon, In Sang;Yoon, In Seong;Kang, Sang in;Kim, Jin-Soo;Kim, Hyeung Jun;Heu, Min Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.6
    • /
    • pp.791-801
    • /
    • 2022
  • Boil-dried concentrates (BDC) and steam-dried concentrates (SDC) were prepared from highly nutritious olive flounder Paralichthys olivaceus roes (OFR) as seafood processing by-products and their nutritional characteristics were investigated. Although SDS-PAGE profiles of the BDC and SDC proteins were similar to each other, it was observed that three of the five OFR protein bands in the 50-100 kDa range had disappeared. We also detected significant differences in the Hunter's color of the two concentrates in terms of color difference (𝚫E) and whiteness. The recovery amounts of BDC and SDC prepared from 100 g of OFR were 18.6 and 21.4 g, respectively, with respective protein contents of 67.7% and 68.9%. The main amino acids of OFR and concentrate proteins were valine, leucine, lysine, arginine, aspartic acid, glutamic acid and alanine, whereas major minerals were sulfur, potassium, sodium and phosphorus, the amounts of which in concentrates had been significantly reduced. We established that by sterilizing, inactivating endogenous enzymes, and inhibiting microbial growth, the cook-dried process contributes to enhancing the concentration and storage stability of nutrients by reducing water activity, volume, and weight. Accordingly, we suggest that concentrates (BDC and SDC) prepared from OFR have considerable potential as nutritionally fortified materials.

Structural and expression analysis of glutelin genes in Oryza sativa L. (벼 glutelin 유전자 구조 및 발현특성분석)

  • Yoon, Ung-Han;Kim, Chang-Kug;Lee, Gang-Seob;Hahn, Jang-Ho;Lee, Jeong-Hwa;Kim, Yeon-Ki;Ji, Hyeon-So;Mun, Jeong-Hwan;Lee, Tae-Ho;Kim, Tae-Ho
    • Journal of Plant Biotechnology
    • /
    • v.38 no.2
    • /
    • pp.176-185
    • /
    • 2011
  • Rice is one of the most important crop in the world, in particular for food resources. With its small genome size of 383 Mb, the Oryza sativa is a model plant for genome research. Indeed, it's grain provides human with a source of carbohydrates and proteins. Rice grain has relatively low protein contents (around 8%) compared to other legume seeds (around 40%). Osborne classified seed proteins into water soluble albumin, salt soluble globulin, alcohol soluble prolamin and acidic/alkaline solution soluble glutelin. Glutelin and prolamin are the major storage proteins in rice. For the gene expression study of seed storage proteins, we analyzed 33,192 EST clones at immature stages in a rice cultivar (Oryza sativa L. cv. 'Ilpum'). Based on the expression analysis, we cloned 11 glutelin genes and figured out the 8 genes are located on Chromosome 2. The expression of glutelin genes appears to be about 28.2% of total level in immature seeds. Interestingly, glu-04 is duplicated as inverted sequences on the same chromosomes as far 4.5 kb. Our results indicate that glutelin genes, evolutionarily, were replicated on the chromosome and thus expressed as specific manners. In a whole protein composition analysis, glu05 (type B7) contains the highest lysin contents (4.51%) among the 11 rice glutelin genes. It will be an interesting future work to increase lysin contents by the gene overexpressor strategy with the aim of improved diet nutritionally fortified.

Effect of Various Fruit-loads on Nitrogen Partitioning, Accumulation, and Remobilization in Young Trees of 'Fuyu' Persimmon (착과 정도가'부유'단감 유목의 질소화합물 분배와 축적 및 재이용에 미치는 영향)

  • Park, Soo-Jeong;Kim, Young-Kee
    • Journal of agriculture & life science
    • /
    • v.45 no.5
    • /
    • pp.57-62
    • /
    • 2011
  • This study was conducted to determine the distribution of nitrogenous compounds to various tree parts and the extent of reserve accumulation in persimmon (Diospyros kaki) under various fruit-loads. This study also ascertained the proportion of storage nitrogen made available for the new growth the following year. On June 15, the fruit-load was adjusted to a leaf-fruit (L/F) ratio of 10, 20, and 30, and some trees were completely defruited. Between June 15 and November 11, the increase of total amino acids were greater with a high L/F ratio. The amino acids increased in the root were negligible at the 10-L/F ratio. Of the total amino acids increased during this period, the proportion distributed to the root was 64% in the 20-L/F, 18.5% in the 30-L/F, and 81% in the defruited trees, and the distribution to the fruits was 81% in 10-L/F, 12% in 20-L/F, and 35% in the 30-L/F trees. Leaf amino acids decreased in the 10-L/F trees. Total proteins increased in autumn were greater as the L/F ratio was higher. Total proteins were in the fruits the most, and the distribution to the permanent parts was decreased as the L/F ratio was decreased. At the L/F ratio of 30, 59% of the total proteins increased in the autumn was distributed to the fruits and 40% to the root. Leaf proteins decreased at 10 and 20 L/F ratios. During the new growth from April 10 to June 10 the following year, amino acids decreased in the old wood and 1-yr-old shoot, whereas proteins decreased only in the 1-year-old shoots. Amino acids and protein decreased by 540 mg and 610 mg, respectively, in the roots of the defruited trees. Total amino acid and proteins in the newly-grown parts were the most at 730 mg and 1290 mg, respectively, when defruited the previous year. They were the least at the 10-L/F ratio, being 120 mg and 400 mg, respectively.

DETECTION OF PHYSIOLOGICAL PROCESSES IN WHEAT BY NIR

  • Salgo, A.;Gergely, Sz.;Scholz, E.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1158-1158
    • /
    • 2001
  • Fast and dynamic biochemical, enzymatic and morphological changes occur during the so-called generative development and during the vegetative processes in seeds. The most characteristic biochemical and compositional changes of this period are the formation and decline of storage components or their precursors, the change of their degree in polymerization and an extensive change in water content. The aim of the present study was to detect the maturation processes in seed nondestructively and to verify the applicability of near infrared spectroscopic methods in the measurement of physiological, chemical and biochemical changes in wheat seed. The amount and variation of different water “species” has been changed intensively during maturation. Characteristic changes of three water absorption bands (1920, 1420 and 1150 nm) during maturation were analysed. It was concluded that the free/bound transition of water molecules could be followed sensitively in different region of NIR spectra. Kinetic changes of carbohydrate reserves were characteristic during maturation. An intensive formation and decline of carbohydrate reserves were observed during early stage of maturation (0 -13 days, high energy demand). An accelerated formation of storage carbohydrates (starch) was detected in the second phase of maturation. Five characteristic absorption bands were analysed which were sensitive indicators the changes of carbohydrates occurred during maturation. Precursors of protein synthesis and the synthesis of reserve proteins and their kinetic changes during maturation were followed from NIR spectra qualitative and qualitatively. Dynamic formation of amino acids and the changes of N forms were detected by spectroscopic, chromatographic and by capillary electrophoresis methods. Calibration equations were developed and validated in order to measure the optimal maturation time protein and moisture content of developing wheat seeds. The spectroscopic methods are offering chance and measurement potential in order to detect fine details of physiological processes. The spectra have many hidden details, which can help to understand the biochemical background of processes.

  • PDF

Genetic variation of 7S and 11S globulins in soybean seed (콩 종실 단백질의 유전변이)

    • Korean Journal of Plant Resources
    • /
    • v.12 no.3
    • /
    • pp.198-203
    • /
    • 1999
  • 7S and 11S globulins are two major storage proteins in soybean seed. For improving the quality of soybean seed protein, an increase of 11S/7S ratio would be a desirable objective because 11S globulin contains much more sulfur-containing amino acids than 7S globulin. In this study, six soybean varieties grown at three locations were used for genetic variation analysis of 7S and 11S globulins. It was possible to screen the soybean genotypes having aberrant subunit compositions of the two globulins by a sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). So, heritabilities, genotypic and phenotypic correlations among eight globulin fraction contents of soybean seeds were estimated. The mean value of 7S and 11S globulin fraction contents were 38.9% and 61.1%, respectively, and the ratio of 7S to 11S globulin ranged from 0.58 to 0.74. The high heritability value was found in $\beta$ subunits but the values of acidic and basic subunits were relatively low. Genotypic correlations were higher than the corresponding phenotypic correlations in most of globulin subunit contents. $\beta$ subunits was negatively correlated with $\alpha$ and $\alpha$' subunits among 7S fractions, while no significant correlation between $\alpha$ and $\alpha$' subunits could be found In case of 11S fractions, acidic and basic subunits exhibited no genotypic but negative phenotypic correlation.

  • PDF