Effect of Various Fruit-loads on Nitrogen Partitioning, Accumulation, and Remobilization in Young Trees of 'Fuyu' Persimmon

착과 정도가'부유'단감 유목의 질소화합물 분배와 축적 및 재이용에 미치는 영향

  • Park, Soo-Jeong (Dept. of Horticulture, Gyeongsang National Univ.(Insti. of Agric. & Life Sci.)) ;
  • Kim, Young-Kee (Dept. of Horticulture, Gyeongsang National Univ.(Insti. of Agric. & Life Sci.))
  • 박수정 (경상대학교 원예학과(농업생명과학연구원)) ;
  • 김영기 (경상대학교 원예학과(농업생명과학연구원))
  • Received : 2011.10.11
  • Accepted : 2011.10.28
  • Published : 2011.10.31

Abstract

This study was conducted to determine the distribution of nitrogenous compounds to various tree parts and the extent of reserve accumulation in persimmon (Diospyros kaki) under various fruit-loads. This study also ascertained the proportion of storage nitrogen made available for the new growth the following year. On June 15, the fruit-load was adjusted to a leaf-fruit (L/F) ratio of 10, 20, and 30, and some trees were completely defruited. Between June 15 and November 11, the increase of total amino acids were greater with a high L/F ratio. The amino acids increased in the root were negligible at the 10-L/F ratio. Of the total amino acids increased during this period, the proportion distributed to the root was 64% in the 20-L/F, 18.5% in the 30-L/F, and 81% in the defruited trees, and the distribution to the fruits was 81% in 10-L/F, 12% in 20-L/F, and 35% in the 30-L/F trees. Leaf amino acids decreased in the 10-L/F trees. Total proteins increased in autumn were greater as the L/F ratio was higher. Total proteins were in the fruits the most, and the distribution to the permanent parts was decreased as the L/F ratio was decreased. At the L/F ratio of 30, 59% of the total proteins increased in the autumn was distributed to the fruits and 40% to the root. Leaf proteins decreased at 10 and 20 L/F ratios. During the new growth from April 10 to June 10 the following year, amino acids decreased in the old wood and 1-yr-old shoot, whereas proteins decreased only in the 1-year-old shoots. Amino acids and protein decreased by 540 mg and 610 mg, respectively, in the roots of the defruited trees. Total amino acid and proteins in the newly-grown parts were the most at 730 mg and 1290 mg, respectively, when defruited the previous year. They were the least at the 10-L/F ratio, being 120 mg and 400 mg, respectively.

본 연구는 착과 정도에 따른 '부유' 감나무(Diospyros kaki cv. Fuyu)의 수체 부위별 질소화합물 분배와 저장양분의 축적 정도를 밝히고, 이들이 다음해 새로운 생장에 재이용되는 관계를 구명하였다. 6월 15일에 엽과비가 10, 20, 30이 되도록 착과량을 조절하였고, 일부는 모든 과실을 완전히 제거하였다. 6월 15일부터 11월 1일까지 증가한 총 아미노산은 제과수에서 가장 많았고, 엽과비가 높을수록 증가하였다. 뿌리는 엽과비 10에서 당년 아미노산의 증가가 없었다. 증가한 총 아미노산이 뿌리로 분배된 비율은 엽과비 20에서 64%, 엽과비 30에서 18.5%, 제과수에서 81%였다. 과실로 분배된 비율은 엽과비 10에서 81%, 엽과비 20에서 12%, 엽과비 30에서 35%였다. 당년 착과량이 많은 엽과비 10의 잎에서 아미노산이 감소하였다. 이 기간 동안 증가한 총 단백질은 엽과비가 높을수록 증가하였다. 당년에 증가한 단백질은 과실로 가장 많이 분배하였고, 엽과비가 낮을수록 영구기관으로 분배되는 양이 감소하였다. 엽과비 30에서는 당년에 증가한 총 단백질이 과실로 59%, 뿌리로 40% 분배하였다. 당년 엽과비 10과 20의 잎에서 단백질이 감소하였다. 이듬해 4월 10일부터 6월 10일까지 신초생장기 동안 아미노산은 모든 처리구의 2년생 이상의 가지와 신초에서, 단백질은 모든 처리구의 신초에서 감소하였다. 특히 제과수는 뿌리에서 아미노산이 540 mg, 단백질이 610 mg 감소하였다. 이듬해 새로운 부위의 총 아미노산과 단백질은 전년도 제과수에서 각각 730 mg, 1290 mg으로 높았고, 전년도 착과량이 많은 엽과비 10에서 각각 120 mg, 400 mg으로 낮았다.

Keywords

References

  1. Cheng, L. and L. H. Fuchigami. 2002. Growth of young apple trees in relation to reserve nitrogen and carbohydrates. Tree Physiol. 22: 1297-1303. https://doi.org/10.1093/treephys/22.18.1297
  2. Choi, S. T., D. S. Park, W. D. Song, and S. M. Kang. 2005. Effect of thinning degrees on fruit characteristics and carbohydrate accumulations of persimmon trees defoliated in early autumn. Acta Hort. 685: 105-112.
  3. Choi, S. T., D. S. Park, S. M. Kang, and Y. C. Cho. 2010. Effect of fruit-load on the growth, absorption, and partitioning of inorganic nutrients in young 'Fuyu' persimmon trees. Sci. Hort. 126: 408-412. https://doi.org/10.1016/j.scienta.2010.07.035
  4. Collins, R. J. and A. P. George. 1997. Managing crop load on non-astringent persimmon (Diospyros kaki L.) grown in the subtropics. Acta Hort. 436: 251-260.
  5. George, A. P., R. J. Nissen, R. J. Collins, and T. S. Rasmussen. 1995. Effects of fruit thinning, pollination and paclobutrazol on fruit set and size of persimmon (Diospyros kaki L.) in subtropical Australia. J. Hort. Sci. 70: 477-484.
  6. George, A. P., A. D. Mowat, R. J. Collins, and M. Morley-Bunker. 1997. The pattern and control of reproductive development in non-astringent persimmon (Diospyros kaki L.): A review. Sci. Hort. 70: 93-122. https://doi.org/10.1016/S0304-4238(97)00043-5
  7. Kang, S. M., K. C. Ko, and J. S. Titus. 1982. Mobilization and metabolism of protein and soluble nitrogen during spring growth of apple trees. J. Amer. Soc. Hort. Sci. 107: 209-213.
  8. Kim, J. C. and S. M. Kang. 2006. Fruit-load effect on seasonal changes of nonstructural carbohydrates in shoots of mature persimmon trees during senescence. Hort. Environ. Biotechnol. 47: 329-335.
  9. Kim, J. C. and S. M. Kang. 2008. Carryover effects of bud-thinning on growth and nonstructural carbohydrates of the shoots in mature persimmon trees. Hort. Environ. Biotechnol. 49: 30-34.
  10. Kim, Y. K., C. S. Lim, S. M. Kang, and J. L. Cho. 2009. Root storage of nitrogen applied in autumn and its remobilization to new growth in spring of persimmon trees (Diospyros kaki cv. Fuyu). Sci. Hort. 119: 193-196. https://doi.org/10.1016/j.scienta.2008.07.013
  11. Kishimoto, O. 1975. Estimations of optimum range of degree of fruit thinning and desirable fruit weight in Japanese pears and persimmon tree. J. Jpn. Soc. Hort. Sci. 43: 368-376. https://doi.org/10.2503/jjshs.43.368
  12. Lenz, F. 2009. Fruit effects on the dry matter- and carbohydrate distribution in apple tree. Acta Hort. 835: 21-38.
  13. Park, D. S., S. T. Choi, K. K. Seo, K. H. Ahn, S. C. Kim, W. D. Song, and S. M. Kang. 2000. Shoot growth and fruit characteristics of 'Fuyu' persimmon as affected by the size of bearing mother branches and the time of fruit-load adjustment. J. Kor. Soc. Hort. Sci. 41: 401-405.
  14. Park, S. J. 2002. Effect of different degrees of defoliation on fruit quality, reserve accumulation and early growth of young Fuyu persimmon. Kor. J. Hort. Sci. Technol. 20: 110-113.
  15. Park, S. J. 2011. Effect of defruiting on nitrogen partitioning, accumulation, and remobilization of young trees in 'Fuyu' persimmon. Kor. J. Hort. Sci. Technol. 29: 306-310.
  16. Park, S. J. and Y. K. Kim. 2011. Defruiting effect of young fuyu persimmon (Diospyros kaki) on assimilate partitioning in-season and early growth the next season. Sci. Hort. 130: 197-202. https://doi.org/10.1016/j.scienta.2011.06.037
  17. Taylor, B. K. and L. H. May. 1967. The nitrogen nutrition of the peach tree. II. Storage and mobilization of nitrogen in young trees. Austral. J. Biol. Sci. 20: 389- 411. https://doi.org/10.1071/BI9670389
  18. Titus, J. S. and S. M. Kang. 1982. Nitrgen metabolism, translocation, and recycling in apple trees. Hort. Rev. 4: 204-246.
  19. Yoon, M. S. 1996. Seasonal changes of nitrogenous compounds and carbohydrates in one-year-old seedlings of persimmon (Diospyros kaki). J. Kor. Soc. Hort. Sci. 37: 257-262.