DOI QR코드

DOI QR Code

Structural and expression analysis of glutelin genes in Oryza sativa L.

벼 glutelin 유전자 구조 및 발현특성분석

  • Yoon, Ung-Han (Genomics Division, National Academy of Agricultural Science, RDA) ;
  • Kim, Chang-Kug (Genomics Division, National Academy of Agricultural Science, RDA) ;
  • Lee, Gang-Seob (Genomics Division, National Academy of Agricultural Science, RDA) ;
  • Hahn, Jang-Ho (Genomics Division, National Academy of Agricultural Science, RDA) ;
  • Lee, Jeong-Hwa (Genomics Division, National Academy of Agricultural Science, RDA) ;
  • Kim, Yeon-Ki (Bioscience and Bioinformatics Division, MyongJi University) ;
  • Ji, Hyeon-So (Genomics Division, National Academy of Agricultural Science, RDA) ;
  • Mun, Jeong-Hwan (Genomics Division, National Academy of Agricultural Science, RDA) ;
  • Lee, Tae-Ho (Bioscience and Bioinformatics Division, MyongJi University) ;
  • Kim, Tae-Ho (Genomics Division, National Academy of Agricultural Science, RDA)
  • Received : 2011.05.25
  • Accepted : 2011.06.03
  • Published : 2011.06.30

Abstract

Rice is one of the most important crop in the world, in particular for food resources. With its small genome size of 383 Mb, the Oryza sativa is a model plant for genome research. Indeed, it's grain provides human with a source of carbohydrates and proteins. Rice grain has relatively low protein contents (around 8%) compared to other legume seeds (around 40%). Osborne classified seed proteins into water soluble albumin, salt soluble globulin, alcohol soluble prolamin and acidic/alkaline solution soluble glutelin. Glutelin and prolamin are the major storage proteins in rice. For the gene expression study of seed storage proteins, we analyzed 33,192 EST clones at immature stages in a rice cultivar (Oryza sativa L. cv. 'Ilpum'). Based on the expression analysis, we cloned 11 glutelin genes and figured out the 8 genes are located on Chromosome 2. The expression of glutelin genes appears to be about 28.2% of total level in immature seeds. Interestingly, glu-04 is duplicated as inverted sequences on the same chromosomes as far 4.5 kb. Our results indicate that glutelin genes, evolutionarily, were replicated on the chromosome and thus expressed as specific manners. In a whole protein composition analysis, glu05 (type B7) contains the highest lysin contents (4.51%) among the 11 rice glutelin genes. It will be an interesting future work to increase lysin contents by the gene overexpressor strategy with the aim of improved diet nutritionally fortified.

벼는 세계에서 가장 중요한 작물이며 크기가 383Mb로 게놈연구 모델 작물로 이용되고 있다. 또한 그 종자는 인간에게 탄수화물과 단백질 영양원을 제공한다. 벼 종자의 단백질은 약 8%를 차지하며 40%를 차지하는 콩 종자의 단백질 양에 비하여 상대적으로 적은 양을 나타낸다. 오스본의 분류에 의하면 종자 단백질은 수용성의 albumin, 염용해성 globulin, 알코올 용해성 prolamin 그리고 약산 또는 알카리 용해성 glutelin으로 나누어진다. Glutelin과 prolamin은 벼의 주요 저장단백질이다. 벼 glutelin 저장단백질 유전자의 발현분석을 위하여 일품벼 미숙종자의 발현유전자 (EST) 분석을 행하였다. 그 결과 11종의 미숙종자 발현 glutelin 유전자를 분리 하였으며 8개의 유전자는 염색체 2번에 위치하였다. Glutelin 유전자 발현양은 전체 미숙종자 발현유전자의 약 28.2%를 차지하였다. 또한 glu-04의 경우 같은 염색체 상에서 4.5 kb 떨어진 곳에 역방향의 같은 염기서열로 복제되어 있었다. 이와 같은 결과는 glutelin 유전자는 진화학적으로 복제되어 염색체 특이적으로 발현하는 것을 나타낸다. 종자 11개 glutelin 유전자들의 아미노산서열분석을 통하여 lysin 함량을 조사한 결과 glu05-type B7에서 4.51%의 높은 lysin 함량을 나타내었다. 향후 유전자의 과발현체를 이용한 lysin 함량을 높이는 영양성 강화 연구가 요구되어진다.

Keywords

References

  1. Abe T, Gusti RS, Ono M, Sasahara T. (1996) Variations in glutelin and high molecular weight endosperm proteins among subspecies of rice (Oryza sativa L.) detected by twodimensional gel electrophoresis. Genes Genet Syst 71:63-8 https://doi.org/10.1266/ggs.71.63
  2. Bewley DJ, Black M. (1985) Seeds, Physiology of development and germination, Plenum press, New York, pp 1-27
  3. Choi H. (2002) Current status and perspectives in varietal improvement of rice cultivars for high-quality and value-added products. Korean J Crop Sci 47:15-32
  4. Duan M, Sun SS. (2005) Profiling the expression of genes controlling rice grain quality. Plant Mol Biol 59:165-78 https://doi.org/10.1007/s11103-004-7507-3
  5. International Rice Genome Sequencing Project. (2005) The mapbased sequence of the rice genome. Nature 436:793-800 https://doi.org/10.1038/nature03895
  6. Jain M, Tyagi AK, Khurana JP. (2008) Genome-wide identification, classification, evolutionary expansion and expression analyses of homeobox genes in rice. FEBS J 275:2845-61 https://doi.org/10.1111/j.1742-4658.2008.06424.x
  7. Katsube-Tanaka T, Duldulao JB, Kimura Y, Iida S, Yamaguchi T, Nakano J, Utsumi S. (2004) The two subfamilies of rice glutelin differ in both primary and higher-order structures. Biochim Biophys Acta 1699:95-102 https://doi.org/10.1016/j.bbapap.2004.02.001
  8. Kawakatsu T, Hirose S, Yasuda H, Takaiwa F. (2010) Reducing rice seed storage protein accumulation leads to changes in nutrient quality and storage organelle formation. Plant Physiol 154:1842-54 https://doi.org/10.1104/pp.110.164343
  9. Kikuchi S, Satoh K, Nagata T, Kawagashira N, Doi K, Kishimoto N, Yazaki J, Ishikawa M, Yamada H, Ooka H, Hotta I, Kojima K, Namiki T, Ohneda E, Yahagi W, Suzuki K, Li CJ, Ohtsuki K, Shishiki T; Foundation of Advancement of International Science Genome Sequencing & Analysis Group, Otomo Y, Murakami K, Iida Y, Sugano S, Fujimura T, Suzuki Y, Tsunoda Y, Kurosaki T, Kodama T, Masuda H, Kobayashi M, Xie Q, Lu M, Narikawa R, Sugiyama A, Mizuno K, Yokomizo S, Niikura J, Ikeda R, Ishibiki J, Kawamata M, Yoshimura A, Miura J, Kusumegi T, Oka M, Ryu R, Ueda M, Matsubara K; RIKEN, Kawai J, Carninci P, Adachi J, Aizawa K, Arakawa T, Fukuda S, Hara A, Hashizume W, Hayatsu N, Imotani K, Ishii Y, Itoh M, Kagawa I, Kondo S, Konno H, Miyazaki A, Osato N, Ota Y, Saito R, Sasaki D, Sato K, Shibata K, Shinagawa A, Shiraki T, Yoshino M, Hayashizaki Y, Yasunishi A. (2003) Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 301:376-9 https://doi.org/10.1126/science.1081288
  10. Kumar S, Nei M, Dudley J, Tamura K. (2008) MEGA: a biologist- centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform. 9:299-306 https://doi.org/10.1093/bib/bbn017
  11. Liu WX, Liu HL, Chai ZJ, Xu XP, Song YR, Qu le Q. (2010) Evaluation of seed storage-protein gene 5' untranslated regions in enhancing gene expression in transgenic rice seed. Theor Appl Genet 121:1267-74 https://doi.org/10.1007/s00122-010-1386-6
  12. Matsuo T, Kumazawa K, Ishii R, Ishihara K, Hirata H. (1995) Science of the rice plant volume two physiology, Nobunkyo press, Tokyo, pp 1063-97
  13. Okita TW, Hwang YS, Hnilo J, Kim WT, Aryan AP, Larson R, Krishnan HB. (1989) Structure and expression of the rice glutelin multigene family. J Biol Chem 264:12573-81
  14. Osborn T. (1924) The vegetable proteins. London, FL: Longmans, Green and Co
  15. Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng L, Orvis J, Haas B, Wortman J, Buell CR. (2007) The TIGR Rice Genome Annotation Resource: improvements and new features. Nucleic Acids Res 35(Database issue):D883-7 https://doi.org/10.1093/nar/gkl976
  16. Paterson AH, Freeling M, Sasaki T. (2008) Grains of knowledge: genomics of model cereals. Genome Res 15:1643-50
  17. Qu le Q, Takaiwa F. (2004) Evaluation of tissue specificity and expression strength of rice seed component gene promoters in transgenic rice. Plant Biotechnol J 2:113-25 https://doi.org/10.1111/j.1467-7652.2004.00055.x
  18. Qu le Q, Xing YP, Liu WX, Xu XP, Song YR. (2008) Expression pattern and activity of six glutelin gene promoters in transgenic rice. J Exp Bot 59:2417-24 https://doi.org/10.1093/jxb/ern110
  19. Shewry PR, Napier JA, Tatham AS. (1995) Seed storage proteins: structures and biosynthesis. Plant Cell 7:945-56 https://doi.org/10.1105/tpc.7.7.945
  20. Shewry PR, Halford NG. (2002) Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot 53:947-58 https://doi.org/10.1093/jexbot/53.370.947
  21. Takaiwa F, Kikuchi S, Oono K. (1986) The structure of rice storage protein glutelin precursor deduced from cDNA. FEBS Lett 206:33-35 https://doi.org/10.1016/0014-5793(86)81335-7
  22. Takaiwa F, Kikuchi S, Oono K. (1989) The complete nucleotide sequence of new type cDNA coding for rice storage protein glutelin. Nucleic Acids Res 17:3289 https://doi.org/10.1093/nar/17.8.3289
  23. Takaiwa F, Oono K, Wing D, Kato A. (1991) Sequence of three members and expression of a new major subfamily of glutelin genes from rice. Plant Mol Biol 17:875-85 https://doi.org/10.1007/BF00037068
  24. Takaiwa F, Yamanouchi U, Yoshihara T, Washida H, Tanabe F, Kato A, Yamada K. (1996) Characterization of common cisregulatory elements responsible for the endosperm-specific expression of members of the rice glutelin multigene family. Plant Mol Biol 30:1207-21 https://doi.org/10.1007/BF00019553
  25. Tanaka K, Sugimoto T, Ogawa M, Kasi Z. (1980) Isolation and characterization of two types of protein bodies in the rice endosperm. Agric. Biol. Chem 44:1633-39 https://doi.org/10.1271/bbb1961.44.1633
  26. Wakasa Y, Yang L, Hirose S, Takaiwa F. (2009) Expression of unprocessed glutelin precursor alters polymerization without affecting trafficking and accumulation. J Exp Bot 60: 3503-11 https://doi.org/10.1093/jxb/erp187
  27. Wen TN, Luthe DS. (1985) Biochemical characterization of rice glutelin. Plant Physiol 78:172-77 https://doi.org/10.1104/pp.78.1.172
  28. Wu CY, Suzuki A, Washida H, Takaiwa F. (1998) The GCN4 motif in a rice glutelin gene is essential for endosperm-specific gene expression and is activated by Opaque-2 in transgenic rice plants. Plant J 14:673-83 https://doi.org/10.1046/j.1365-313x.1998.00167.x
  29. Xu JH, Messing J. (2008) Organization of the prolamin gene family provides insight into the evolution of the maize genome and gene duplications in grass species. Proc Natl Acad Sci U S A 105:14330-5 https://doi.org/10.1073/pnas.0807026105
  30. Xu JH, Messing J. (2009) Amplification of prolamin storage protein genes in different subfamilies of the Poaceae. Theor Appl Genet 119:1397-412 https://doi.org/10.1007/s00122-009-1143-x
  31. Yoon UH, Lee GS, Lee JS, Hahn JH, Kim CK, Kikuchi S, Satoh K, Kim JA, Lee JH, Lee TH, Kim YH. (2009a) Structural analysis of seed developmental stage ESTs in Oryza sativa L. Korean J of Plant Biotechnology 36:130-136 https://doi.org/10.5010/JPB.2009.36.2.130
  32. Yoon UH, Lee GS, Kim CK, Lee JS, Hahn JH, Yun DW,, Ji HS, Lee TH, Lee JH, Park SH, Kim GW, Seo MS, Kim YH (2009b) Analysis of germination seed stage expressed sequence tags in Oryza sativa L. Korean J of Plant Biotechnology 36:281-288 https://doi.org/10.5010/JPB.2009.36.3.281
  33. Yoon UH, Kim YK, Kim CK, Hahn JH, Kim DH, Lee TH, Lee GS, Park SC, Nahm BH (2010) Current status on expression profiling using rice microarray. Korean J of Plant Biotechnology 37: 144-152 https://doi.org/10.5010/JPB.2010.37.3.144

Cited by

  1. Structural and expression analysis of prolamin genes in Oryza sativa L. vol.6, pp.3, 2012, https://doi.org/10.1007/s11816-012-0220-9
  2. New design of rice seed storage proteins vol.38, pp.4, 2011, https://doi.org/10.5010/JPB.2011.38.4.263
  3. Discrimination of Korean rice varieties as revealed by DNA profiling and its relationship with genetic diversity vol.44, pp.3, 2017, https://doi.org/10.5010/JPB.2017.44.3.243