• Title/Summary/Keyword: stone powder

Search Result 132, Processing Time 0.026 seconds

A Study on Bloating of Porous Foam by Pressure Infiltration with H2O2 (과산화수소의 가압침투에 의한 다공성 발포체에 관한 연구)

  • Kim, Gui-Shik;Jeong, Ji-Hyun
    • Journal of Power System Engineering
    • /
    • v.20 no.5
    • /
    • pp.86-91
    • /
    • 2016
  • This paper is concerned chiefly with the method of porous foam manufacture using basalt stone powder sludge. The hydrogen peroxide($H_2O_2$) of bloating agent has lots of problems to manufacture porous lightweight aggregate due to fast reaction rate with cement or calcium hydroxide($Ca(OH)_2$). The $H_2O_2$ injecting method using nozzle for manufacturing porous lightweight aggregate is proposed, in this study. This method is to inject $H_2O_2$ at the pressure of 10 MPa on upper side of slurry mixing materials such as stone powder sludge and quick-lime(CaO) by injector. The specimen was dried in furnace at $100^{\circ}C$ for 1 hour and cured at ambient temperature for 30 days. We analyzed the characteristics including specific gravity and water absorption. The experiments were found that the porous foam has low specific gravity, high water absorption and uniform distribution of porous more than manufactured foam by general bloating methods.

Machine learning-based techniques to facilitate the production of stone nano powder-reinforced manufactured-sand concrete

  • Zanyu Huang;Qiuyue Han;Adil Hussein Mohammed;Arsalan Mahmoodzadeh;Nejib Ghazouani;Shtwai Alsubai;Abed Alanazi;Abdullah Alqahtani
    • Advances in nano research
    • /
    • v.15 no.6
    • /
    • pp.533-539
    • /
    • 2023
  • This study aims to examine four machine learning (ML)-based models for their potential to estimate the splitting tensile strength (STS) of manufactured sand concrete (MSC). The ML models were trained and tested based on 310 experimental data points. Stone nanopowder content (SNPC), curing age (CA), and water-to-cement (W/C) ratio were also studied for their impacts on the STS of MSC. According to the results, the support vector regression (SVR) model had the highest correlation with experimental data. Still, all of the optimized ML models showed promise in estimating the STS of MSC. Both ML and laboratory results showed that MSC with 10% SNPC improved the STS of MSC.

A study on the quality performances of the high flowing concrete for binder types (분체의 종류에 따른 고유동 콘크리트의 품질성능에 관한 연구)

  • 권영호;이현호;하재담
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.567-572
    • /
    • 2002
  • This research investigates experimentally an effect on the quality performances of the high flowing concrete according to binder types. The purpose of this study is to determine the optimum mix proportion of the high flowing concrete having good flowability, viscosity and no-segregation. For this purpose, two types using belite cement+lime stone powder(LSP) and furnace slag cement+lime stone powder are selected and tested by design factors including water cement ratio, fine and coarse aggregate volume ratio. As test results of this study, the optimum mix proportion for binder types is as followings. 1) One type based belite cement ; water cement ratio $51^{\circ}C$, fine aggregate volume ratio $43^{\circ}C$ and coarse aggregate volume ratio $53^{\circ}C$, replacement ratio of LSP $42.7^{\circ}C$. 2) Another type based slag cement : water cement ratio $41^{\circ}C$, fine aggregate volume ratio $47^{\circ}C$ and coarse aggregate volume ratio $53^{\circ}C$, replacement ratio of LSP $13.5^{\circ}C$.

  • PDF

Shrinkage and Creep of Recycled Aggregate Concrete Using Pozzolanic Materials (포졸란 재료를 사용한 재생골재 콘크리트의 건조수축 및 크리프)

  • 문대중;임남웅;김양배
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.637-642
    • /
    • 2002
  • In this study, the experiments of recycled aggregate concrete with fly ash and special blended slag powder or diatom calcined at 650$\circ$ were performed on compressive strength, shrinkage and creep. The compressive strength of concrete with recycled aggregate and pozzolanic materials were higher than that of concrete with crushed stone and OPC. On the other hand, the shrinkage and creep of concrete with recycled aggregate and pozzolanic materials was smaller than that of concrete with crushed stone and OPC. Futhermore, the shrinkage and creep of recycled aggregate concrete with fly ash and special blended slag powder was a little decreased that of recycled aggregate concrete with fly ash and diatom. Relationship between compressive strength and creep coefficient was shown to the linear relation like as $\sigma$$_{c}$= -30CF+404.4.

  • PDF

A Study on the Properties of the Confined water ratio for Binder type and Replacement ratio (결합재의 종류 및 치환율에 따른 구속수비의 특성에 관한 연구)

  • Kwon Yeong-Ho;Lee Hyun-Ho;Lee Hwa-Jin;Ha Jae-Dam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.584-587
    • /
    • 2004
  • This research investigates the rheological behavior and the confined water ratio of the cement paste and binder condition in order to predict mix design proportion of the high flowing concrete. The purpose of this study is to determine the optimum replacement ratio of binders including fly ash, and lime stone powder by the cement weight. For this purpose, belite cement, blast furnace slag cement and ordinary portland cement are selected. As test results, the confined water ratio shows the following range ; OPC>blast furnace slag cement>belite cement. Therefore, belite cement is proved very excellent cementitious materials in a view point of the flowability. The optimum replacement ratio of lime stone powder is shown over $30\%$ in case of belite cement and about $10\%$ in case of slag cement type. Also, the optimum replacement ratio of fly ash is shown $30\%$ by the cement weight considering the confined water ratio and deformable coefficient of the paste condition.

  • PDF

Properties of ECO-permeable Polymer Concrete (환경 친화형 투수성 폴리머 콘크리트의 특성)

  • Park, Fill-Woo;Youn, Joon-No;Sung, Chan-Yong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.149-152
    • /
    • 2002
  • This study is performed to evaluate the properties of ECO-permeable polymer concrete with blast furnace slag powder and stone dust. The unit weight is in the range of $1,821kg/m^3{\sim}1,955kg/m^3$, the unit weights of those concrete are decreased $15%{\sim}20.8%$ than that of the normal cement concrete. The highest strength is achieved by ECO-permeable polymer concrete filled blast furnace slag powder 50% and stone dust 50%, it is increased 36% by compressive strength, 119% by tensile strength and 217% by bending strength than that of the normal cement concrete, respectively. The coefficient of permeability is in the range of $5.6{\times}10^{-2}cm/s{\sim}8.1{\times}10^{-2}cm/s$, and it is largely dependent upon the mix design.

  • PDF

The Strength Properties of Autoclaved Lightweight Concrete U sing Stone Powder Sludge (석분 슬러지를 사용한 경량 기포 콘크리트의 강도 특성)

  • Jeong Ji Yong;Choi Sun Mi;Sun Joung, Soo;Choi Se Jin;Lee Seong Yeon;Kim Jin Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.765-768
    • /
    • 2005
  • This study is investigated the strength properties of ALC(Autocalved Lightweight Concrete) using SPS(Stone Powder Sludge), to develop recycling technique of SPS. At a given replacement percent of SPS and addition percent of foam, the results show that its the strength properties are equal or higher than the quartz used in a raw material of ALC, and it is also found that the addition percent of the foam and the strength properties have a certain relation of linear.

  • PDF

Changes of the surface roughness depending on immersion time and powder/liquid ratio of various tissue conditioners (수종의 조직 양화재의 침수시간과 분액비에 따른 표면 거칠기의 변화)

  • Kim, Kyung-Soo;Moon, Hong-Suk;Shim, June-Sung;Jung, Moon-Kyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.108-118
    • /
    • 2009
  • Statement of problem: Volume stability, microstructure reproducibility and fluidity along with compatibility with dental stone must be in consideration in order to use tissue conditioner as a material for functional impression. There are few studies concerning the influence of time factor in oral condition on surface roughness of the stone and optimal retention period in the oral cavity considering such changes in surface roughness. Purpose: The purpose of this study was to find out the influence of various kinds of tissue conditioner, its powder/liquid ratio and immersion time on surface roughness of the stone. Material and methods: Materials used in this study were the three kinds of tissue conditioners(Coe-Comfort, Visco-Gel, Soft-Liner) and were grouped into three: group R-mixed with standard powder/liquid ratio that was recommended by the manufacturers, group M-mixed with 20% more powder, group L-mixed with 20% less powder. Specimens were made with the size of 20 mm diameter and 2 mm width. Each tissue conditioner specimens were subdivided into 5 groups according to the immersion time(0 hour, 1 day, 3 days, 5 days, 7 days), completely immersed into artificial saliva and were stored under $37^{\circ}C$. Specimens of which the given immersion time elapsed were taken out and were poured with improved stone, making the stone specimens. Surface roughness of the stone specimens was measured by a profilometer. Results: Within the limitation of this study, the following results were drawn. 1. Major influencing factor on surface roughness of the stone model made from tissue conditioner was the retention period(contribution ratio($\rho$)=62.86%, P<.05) of the tissue conditioner in oral cavity to make functional impression. 2. In case of Coe-Comfort, higher mean surface roughness value of the stone model with statistical significance was observed compared to that of Soft-Liner and Visco-Gel as immersion time changes(P<.05). 3. In case of group L(less), higher mean surface roughness value of the stone model with statistical significance was observed compared to that of R(recommended) and M(more) group as immersion time changes(P<.05). Conclusion: We may conclude that as the retention period of time in oral cavity influences surface roughness of the stone model the most and as the kind of tissue conditioner and its P/L ratio may influence also, clinician should well understand the optimal retention period in oral cavity and choose the right tissue conditioner for the functional impression, thus making the functional impression with tissue conditioner usefully.

The Properties of Concrete Incorporating Stone Powders as Part of Fine Aggregates (잔골재의 일부로 사용된 부순골재 미분말이 콘크리트 성질에 미치는 영향)

  • Kang, Su-Tae;Seo, Jun-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.116-122
    • /
    • 2016
  • This study was intended to evaluate the properties of concrete incorporating stone powders which are created during crushing natural stones to produce crushed aggregates. For concretes with 0~30 wt.% partial replacement fine aggregates with stone powders, experiments of slump, air content, strength and drying shrinkage were carried out. The experiments found that the increase of the amount of stone powders sharply decreased slump and air content. Partially using stone powders instead of fine aggregates was found to increase both compressive and tensile strength slightly. Substituting higher amount of stone powders presented higher drying shrinkage. When HRWRA was added into the concrete with stone powders in order to obtain workability similar to that of plain concrete without stone powders for the same water-cement ratio and unit weight of cement, air content increased with the amount of HRWRA but strength and drying shrinkage were hardly affected by adding HRWRA.

A Study on Bloating of Porous Ceramic (다공성 세라믹의 발포에 관한 연구)

  • Kim, Gui-Shik;Kim, Hyeon-Gwan;Jeong, Ji-Hyun
    • Journal of Power System Engineering
    • /
    • v.17 no.2
    • /
    • pp.108-113
    • /
    • 2013
  • In this study, lightweight aggregate was made from basalt stone powder sludge. Clay and glass powder were respectively added from 0 to 20 wt% and from 0 to 100 wt%. The glass powder helped to form glassy phase which trapped generating gas in the materials. $CaCO_3$ helping bloating process was added from 0 to 10 wt%. It was possible to produce lightweight aggregate at range from $1150^{\circ}C$ to $1200^{\circ}C$. The specimen was heated in furnace at 1100, 1150 and $1200^{\circ}C$ for 15 min, respectively, to sinter aggregates. Chemical composition of materials were determined, and characteristics were analyzed, including specific gravity, water absorption. Lightweight aggregate which was heated at $1200^{\circ}C$ had specific gravity of $0.53g/cm^3$, water absorption of 3.08%, and this value satisfied KS L 8551 standard.