DOI QR코드

DOI QR Code

The Properties of Concrete Incorporating Stone Powders as Part of Fine Aggregates

잔골재의 일부로 사용된 부순골재 미분말이 콘크리트 성질에 미치는 영향

  • Received : 2016.07.22
  • Accepted : 2016.08.10
  • Published : 2016.09.01

Abstract

This study was intended to evaluate the properties of concrete incorporating stone powders which are created during crushing natural stones to produce crushed aggregates. For concretes with 0~30 wt.% partial replacement fine aggregates with stone powders, experiments of slump, air content, strength and drying shrinkage were carried out. The experiments found that the increase of the amount of stone powders sharply decreased slump and air content. Partially using stone powders instead of fine aggregates was found to increase both compressive and tensile strength slightly. Substituting higher amount of stone powders presented higher drying shrinkage. When HRWRA was added into the concrete with stone powders in order to obtain workability similar to that of plain concrete without stone powders for the same water-cement ratio and unit weight of cement, air content increased with the amount of HRWRA but strength and drying shrinkage were hardly affected by adding HRWRA.

이 연구에서는 부순골재 생산과정에서 발생하는 다량의 골재 미분말이 콘크리트의 성질에 미치는 영향을 살펴보고자 하였다. 골재 미분말을 잔골재 중량의 0~30 wt.% 범위로 치환한 콘크리트에 대해 슬럼프, 공기량, 강도 및 건조수축 변화에 대한 실험을 실시하였다. 실험 결과, 골재 미분말의 사용량이 증가함에 따라 슬럼프 및 공기량이 크게 저하되는 것으로 나타났으며, 골재 미분말을 잔골재의 10~30% 치환하여 사용하였을 때 압축강도 및 인장강도가 골재 미분말을 사용하지 않은 경우에 비해 약간 증가되는 것으로 나타났다. 건조수축 변형률은 골재 미분말 사용량이 증가할수록 더 커지는 것으로 나타났다. 동일한 물시멘트비, 단위시멘트량에 대해 골재 미분말을 사용하면서 골재 미분말을 혼합하지 않은 콘크리트와 유사한 작업성을 얻기 위해 고성능감수제를 적절량 사용한 경우, 사용량에 따라 공기량은 약간 증가하고, 강도 및 건조수축 변형률은 큰 변화가 나타나지 않았다.

Keywords

References

  1. Abou-Zied, M. N., and Fakhry, M. M. (2003), Short-Term Impact of High Aggregate Fines Content on Concrete Incorporating Water-Reducing Admixtures, ACI Materials Journal, 100(4), 280-285.
  2. Ahmed, A. E., and El-Kourd, A. A. (1989), Properties of Concrete Incorporating Natural and Crushed Stone Very Fine Sand, ACI Materials Journal, 86(4), 417-424.
  3. Bigas, J. P., and Gallias, J. L. (2002), Effect of Fine Mineral Additions on Granular Packing of Cement Mixtures, Magazine of Concrete Research, 54(3), 155-164. https://doi.org/10.1680/macr.2002.54.3.155
  4. British Standard Institution (BSI) (2013), BS EN 12620: Aggregates for concrete.
  5. Celik, T., and Marar, K. (1996), Effects of Crushed Stone Dust on Some Properties of Concrete, Cement and Concrete Research, 26(7), 1121-1130. https://doi.org/10.1016/0008-8846(96)00078-6
  6. Katz, A., and Baum, H. (2006), Effect of High Levels of Fines Content on Concrete Properties, ACI Materials Journal, 103(6), 474-482.
  7. Koehler, E. P., and Fowler, D. W. (2008), Dust-of-Fracture Aggregate Microfines in Self-Consolidating Concrete, ACI Materials Journal, 105(2), 165-173.
  8. Korea Standard Association (KSA) (2007), KS F 2527: Crushed aggregate for concrete (in Korean).
  9. Kronlof, A. (1994), Effect of Very Fine Aggregate on Concrete Strength, Materials and Structures, 27, 15-25. https://doi.org/10.1007/BF02472816
  10. Malhotra, V. M., and Carette, G. G. (1985), Performance of Concrete Incorporating Limestone Dust as Partial Replacement for Sand, ACI Journal, 82(3), 363-371.
  11. Monteiro, P. J. M., and Mehta, P. K. (1986), Improvement of the Aggregate-Cement Paste Transition Zone by Grain Refinement of Hydration Products, Proceedings of 8th International Congress on Chemistry of Cement, Rio de Janeiro, 3, 433-437.
  12. Philpotts, A., and Ague, J. (2009), Principles of Igneous and Metamorphic Petrology, Cambridge University Press, Cambridge, 130-148.
  13. Song, J. W., and Choi, J. J. (2013), The Influence of Fine Particles Under 0.08 mm Contained in Aggregate on the Characteristics of Concrete, Journal of the Korea Concrete Institute, 25(3), 347-354 (in Korean). https://doi.org/10.4334/JKCI.2013.25.3.347
  14. Standards Australia (2009), AS 2758: Aggregates and rock for engineering purposes - Concrete aggregates.