• Title/Summary/Keyword: stone dust sludge

Search Result 12, Processing Time 0.027 seconds

Physical Effect of Adding Stone Dust Sludge on the Properties of Cement Mortar (석분슬러지 혼입이 시멘트 모르타르 특성에 미치는 물리적 영향)

  • Seo, Jun-Yeong;Choi, Seon-Jong;Kang, Su-Tae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.2
    • /
    • pp.152-158
    • /
    • 2015
  • In order to investigate the feasibility of stone dust sludge as fine aggregate, an experimental study was performed on cement mortar with stone dust sludge. fresh mortar properties and strength with various stone dust sludge replacement ratios were estimated. the replacement ratio adopted in this study was 0, 10, 20, 30%. Flow, air content, and rheological properties were considered as properties of fresh mortar. Compressive strength and flexural tensile strength were measured for strength. The results are as follows. Higher amount of stone dust sludge caused reduction in slump and air content. In the rheological properties, both yield stress and plastic viscosity increased as stone dust sludge content increased up to 20% replacement ratio, but there were no remarkable difference between 20 and 30%. Yield stress increased drastically between 10 and 20%. Compressive and flexural tensile strength results indicated that the strength variation was not significant according to stone dust sludge content, but the strength gain in the early age by adding stone dust sludge was evident. the strength at the age of 28 days however did not show noticeable effect of adding stone dust sludge.

Utilization of Stone Sludge Produced by Stone Block Manufacturing Process as Concrete Admixtures (석재 가공시 발생한 석분슬러지의 콘크리트 혼화재료로의 활용)

  • Jeong, Jin-Seob;Lee, Jong-Cheon;Yang, Keek-Young;So, Kwang-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.6
    • /
    • pp.83-89
    • /
    • 2008
  • The stone sludge produced during the manufacturing process of stone blocks is considered as one of industrial waste materials. This stone sludge are managed to either burying under the ground or stacking in the yard, but this disposal process is required an extra costs. The stone sludge disposal like burying or stacking also cause environmental pollutions such as ground pollution and subterranean water pollution. Thus, this study was conducted to explore the possibility of recycling of stone dust sludge as a concrete mixing material in order to extend recycling methods and to solve the shortage of aggregate caused by recently increased demand in construction. Based on the experiment results on various ratios of cement to stone sludge content, the compressive strengths of concrete were recorded in the range of $20{\sim}30N/mm2$. The results did not show any decrease in compressive strength due to the stone dust content. It can be concluded that the stone sludge produced by stone block manufacturing can be sufficiently recycled as one of concrete mixing materials in the aspect of compressive strength.

A Study on the Application of Landfill Liners with Stone Dust Sludge (석분슬러지를 이용한 쓰레기매립장 차수재의 적용성에 관한 연구)

  • Cho, Jae-Hyung;Yoon, Tae-Gook;Yeo, Byeong-Chul;Ahn, Sang-Ro;Chun, Byung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.483-490
    • /
    • 2005
  • At present around 50 companies have their own crushing plants, which manufacture rock into crushed sand, over around 350 different quarry throughout the nation. However, in most plants the stone dust sludge is left as it is in their plants so that they have difficulty to utilize. Furthermore, environmental pollution may be even caused due to dust generated when it is dried. Recycling is starting capturing the attention of the people working over the quarry due to the reasons described above. This research has studied in the quarters the usability as landfill liner of the stone dust sludge, which is industrial waste. We investigated what technological properties it would have after mixing the stone dust sludge with SM(sandy soil) first and then with blast furnace slag or reject ash, which is waste, and cement as the stabilizer. As the result of three tests; compacting test, strength test, and permeability test; to satisfy the regulatory guideline of the government that is the compress strength over 5 $kgf/cm^2$, the flexibility over 1 $kgf/cm^2$, and the permeability under $1.0{\times}10^{-7}cm/sec$ From this research, we could confirm that stone dust sludge would be used as waste landfill liner if it were mixed with other waste by the proper mixing ratio.

  • PDF

Evaluation of Some Stone Dust and Sludge Generated in the Aggregate Production Process and Research Trends for Its Use (골재 생산과정에서 발생하는 일부 석분의 평가와 그 활용 연구 동향)

  • Lee, Jin-Young;Cheong, Young-Wook;Ji, Sang-Woo;Lee, Dong-Gil
    • Economic and Environmental Geology
    • /
    • v.54 no.5
    • /
    • pp.605-613
    • /
    • 2021
  • When crushing rocks to produce aggregates, solid stone dust or sludge is generated as a by-product. These by-products are classified as waste and are not utilized, and most of them are disposed of landfills. This by-product differs in mineral composition, chemical composition, and physical properties depending on the rock type and aggregate production process. Therefore, if a technology that can make good use of the inherent physical or chemical properties of by-products is developed, economic and environmental benefits can be achieved instead of disposal. In this study, stone dust and sludge were collected from domestic aggregate producers and physical and chemical properties were investigated by performing XRD mineral analysis, particle size analysis, and chemical analysis. In addition, the research trend was identified through a domestic and international research case studies on the use of stone powder and sludge.

The Fundamental study on Development of Ceiling materials using the Zeolite and Stone dust, Sludge (제올라이트와 석분 및 슬러지를 이용한 천장재의 개발에 관한 기초적 연구)

  • 임병호;류희정;최영준;이승조;김태곤;박정민;김화중
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.777-784
    • /
    • 1997
  • This paper is fundamental study to develop ceiling materials, using the properties of Zeolite, stone dust and sludge for the purpose of prevention of environmental pollution and reuse of industrial wastes. According to latin square method, We estimated to the significant level ad optimum level for a significant factor, and investigated to the significant degree to extend each factor for required capacity. Thus, we investigated for required capacity in ceiling material such as, compressive and bending strength, absorptivity and thermal conductivity.

  • PDF

The Fundamental study on Development of high performance Floor materials using the Zeolite and Stone dust (제올라이트와 석분을 이용한 고성능 바닥재의 개발에 관한 기초적 연구)

  • 류희정;임병호;최영준;이승조;김태곤;박정민;김화중
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.785-790
    • /
    • 1997
  • In domestic, it is not a little results to use natural mineral, stone and sludge as a construction materials. Accordingly, it is required to study for higher application from of resources these materials in its economic and environmental aspects. So, the purpose of this study is to develop the excellent construction materials, a as compare with existing floor materials in material capacity and economic aspects, using natural zeolite, stone dust and sludge. In this viewpoint, this paper investigated to the required capacity such as, compressive strength, bending strength and absorption according to experiment.

  • PDF

Recyling of Waste Materials for Iron Ore Sintering (제철소내 폐기물의 소결공정에서의 이용기술)

  • 문석민;이대열;정원섭;신형기
    • Resources Recycling
    • /
    • v.3 no.3
    • /
    • pp.12-20
    • /
    • 1994
  • Difficulties lies on using the dust from iron making process as a raw material for sintering process mainly because of high amount of Zn or alkali content and its ultra fine characteristics. To eliminate these toxic influence, new fluxing materials were tested and could get a very successful results. This fluxing materials, Calcium-ferrite of magnesio-ferrite were made from various waste materials such as lime stone sludge, bag filter dust, waste EP dust and dolomite sludge by simple way of pre-sintering. Sintering behavior as a fluxing materials was revealed to be good in any aspects and new concept of total recycling system could be established.

  • PDF

Recycle Possibility of the Stone-Dust in Quarry as Subbase Layer Materials of the Road (도로 보조기층재로서 채석장 석분토의 재활용가능성 분석)

  • Kim, Kyeong-Su;Song, Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.17 no.2 s.52
    • /
    • pp.279-287
    • /
    • 2007
  • An ore of stone obtained from quarry lose its about 60% such as the muck and the stone-dust during the process of making the architectural block, the crushed aggregate and so on. A part of the muck is only reutilized for the crushed aggregate as road pavement materials, while the most of the muck in the shape of powder is mixed with water and then it is deposited in a sludge tank. The muck in the shape of powder is called the stone-dust. If the stone-dust is discharged and sprayed, an ecosystem will have terrible damage because the seepage of surface water, the flow of ground water and the movement of air are not occurred smoothly by packing the void of soils. As the Waste Management Law (2003) in Korea, the stone-dust is sorted out the industrial waste and the most of that is dumped in ground. Therefore, the establishments of an efficient recycling plan are necessary through the improvement of engineering properties of the stone-dust. To investigate the possibility of recycle and improvement for the stone-dust, the stone-dust and natural soils are sampled from six quarries in Korea. The various soil tests are performed by use of the mixed soils with the stone-dust content ratio. As the result of various soil tests, the recycle possibility of the stone-dust is analyzed as subbase layer materials of the roads.

Evaluation of Geotechnical Engineering Properties and Use of Mixed Soil Containing Waste Stone Sludge (폐석분 혼합토의 지반공학적 특성 및 활용에 관한 연구)

  • Kim, Chan-Kee;Jung, Soo-Hoon;Cho, Won-Bum
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.3
    • /
    • pp.17-24
    • /
    • 2008
  • This study is conducted to investigate the possibility of the utilization of the mixed soil formed by mixing stone sludge, bentonite, and residual soil as a soil sealant sustaining both stability and capacity in the barrier system. A series of tests were performed on the mixed soils to evaluate basic properties such as compaction, compressive strength, permeability and CBR of these materials. The results indicates that as the stone sludge content increases, the optimum moisture content increases a little, but the maximum dry density decreases. The compressive strength and CBR decrease, and the cohesion, internal friction angle and expansion ratio increase. When the bentonite content increases, the maximum dry density decreases, and the optimum moisture content, compressive strength and cohesion, internal friction angle, CBR and expansion ratio increase. Mixing ratio of the mixed soil contained with the stone dust more than 10% and the bentonite less than 10% satisfies the standard of the permeability coefficient as the soil sealant.

  • PDF

An Analysis on the Properties of Cement Mortar using Sewage Sludge Incineration Ash (하수슬러지 소각재를 이용한 시멘트 모르타르의 특성분석)

  • Ryu, Heon-Ki;Park, Jeong-Min
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.55-62
    • /
    • 2010
  • This is an experimental research in order to judge the applicability of sewage sludge incineration ash having applied the mixing proportion needed to manufacture bricks and to do plaster work with addition of hwangtoh and slaked lime as a part of the methods for utilizing the wastes produced from sewage sludge incineration ash. Based on the results from experiment and analysis, it is judged that, in case of mixing proportion of 1:2 for the purpose of plastering and masonry work, the cement mortar produced by using a 10% addition ratio of sewage sludge incineration ash with mixture of hwangtoh covering all range of addition ratio, and also the cement mortar produced by using a 20% of sewage sludge incineration ash together with 0% and 10% addition ratio of hwangtoh, was possible to be applied to the practical use. In case of mixing proportion of 1:7 for manufacture of bricks and blocks, if such brick and block products are produced with 10% and 20% addition ratio of sewage sludge incineration ash having added aggregate fines or stone dust that has been actually used in brick and block manufacturing, it is judged that these bricks and blocks could be practically used in the job sites, although strength development is a little bit lower.

  • PDF