• Title/Summary/Keyword: stokes' law

Search Result 52, Processing Time 0.028 seconds

Study on the Effects of Surface Roughness and Turbulence Intensity on Dam-break Flows (댐 붕괴 유동에 미치는 표면 거칠기와 난류강도 변화의 영향 연구)

  • Park, Il-Ryong;Jung, Kwang-Hyo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.3
    • /
    • pp.247-253
    • /
    • 2012
  • Dam-break flows, a type of very shallow gravity-driven flow, are substantially influenced by resistance forces due to viscous friction and turbulence. Assuming turbulent flow, the main focus of this study is to validate the increase of drag forces caused by surface roughness and especially turbulence intensity. A Reynolds Averaged Navier-Stokes(RANS) approach with the standard k-${\varepsilon}$ turbulence model is used for this study, where the free surface motion is captured by using a volume of fluid(VOF) method. Surface roughness effects are considered through the law of the wall modified for roughness, while the initial turbulence intensity which determines the lowest level of turbulence in the flow domain of interest is used for the variation of turbulence intensity. It has been found that the numerical results at higher turbulence intensities show a reasonably good agreement with the physical aspects shown by two different dam-break experiments without and with the impact of water.

Visous resistance analysis of a ship using numerical solutions (수치해를 이용한 선박의 점성저항 해석)

  • 곽영기
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.100-106
    • /
    • 1997
  • Viscous flow around an actual ship is calculated by an use of RANS(Reynolds-averaged Navier-Stokes) solver. Reynolds stress is modelled by using k-$\varepsilon$ turbulence model and the law of wall is applied near the body. Body fitted coordinates are introduced for the treatment of the complex boundary of the ship hull form. The transformed equations in the computational domain are numerically solved by an employment of FVM(Finite Volume Method). SIMPLE(Semi-Implcit Pressure Linked Equation) method is adopted in the calculation of pressure and the solution of the disssssssscretized equation is obtained by the line-by-line method with the use of TDMA(Tri-Diagonal Matrix Algorithme). The subject ship model of actual calculation is 4,410 TEU class container carrier. For 4 geosim models the calculated viscous resistancce values are compared with the model test results and analyzed on their componentss. The resistance performance of an actual ship is predicted very resonably, so this mothod may be utilized as a design tool of hull form.

  • PDF

Unsteady Analysis of Impeller-Volute Interaction in Centrifugal Pump

  • Cheah, Kean Wee;Lee, Thong See;Winoto, Sonny H.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.3
    • /
    • pp.349-359
    • /
    • 2011
  • An unsteady numerical analysis has been carried out to study the strong impeller volute interaction of a centrifugal pump with six backward swept blades shrouded impeller. The numerical analysis is done by solving the three-dimensional Reynolds Averaged Navier-Stokes codes with standard k-${\varepsilon}$ two-equations turbulence model and wall regions are modeled with a scalable log-law wall function. The flow within the impeller passage is very smooth and following the curvature of the blade in stream-wise direction. However, the analysis shows that there is a recirculation zone near the leading edge even at design point. When the flow is discharged into volute casing circumferentially from the impeller outlet, the high velocity flow is severely distorted and formed a spiraling vortex flow within the volute casing. A spatial and temporal wake flow core development is captured dynamically and shows how the wake core diffuses. Near volute tongue region, the impeller/volute tongue strong interaction is observed based on the periodically fluctuating pressure at outlet. The results of existing analysis also proved that the pressure fluctuation periodically is due to the position of impeller blade relative to tongue.

Partitioned coupling strategies for fluid-structure interaction with large displacement: Explicit, implicit and semi-implicit schemes

  • He, Tao
    • Wind and Structures
    • /
    • v.20 no.3
    • /
    • pp.423-448
    • /
    • 2015
  • In this paper the unsteady fluid-structure interaction (FSI) problems with large structural displacement are solved by partitioned solution approaches in the arbitrary Lagrangian-Eulerian finite element framework. The incompressible Navier-Stokes equations are solved by the characteristic-based split (CBS) scheme. Both a rigid body and a geometrically nonlinear solid are considered as the structural models. The latter is solved by Newton-Raphson procedure. The equation governing the structural motion is advanced by Newmark-${\beta}$ method in time. The dynamic mesh is updated by using moving submesh approach that cooperates with the ortho-semi-torsional spring analogy method. A mass source term (MST) is introduced into the CBS scheme to satisfy geometric conservation law. Three partitioned coupling strategies are developed to take FSI into account, involving the explicit, implicit and semi-implicit schemes. The semi-implicit scheme is a mixture of the explicit and implicit coupling schemes due to the fluid projection splitting. In this scheme MST is renewed for interfacial elements. Fixed-point algorithm with Aitken's ${\Delta}^2$ method is carried out to couple different solvers within the implicit and semi-implicit schemes. Flow-induced vibrations of a bridge deck and a flexible cantilever behind an obstacle are analyzed to test the performance of the proposed methods. The overall numerical results agree well with the existing data, demonstrating the validity and applicability of the present approaches.

Numerical analysis of the differential pressure venturi-cone flowmeter (차압식 벤튜리콘 유량계에 대한 유동해석)

  • 윤준용;맹주성;이정원
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.714-720
    • /
    • 1998
  • The differential pressure venturi-cone flowmeter is an advanced flowmeter which has many advantages such as wide range of measurement, high accuracy, excellent flow turn-down ratio, low headless, short installation pipe length requirement, and etc. Like other differential pressure flowmeters, the venturi-cone flowmeter uses the law of energy conservation, but its shape and position make it perform better than others. The cone acts as its own flow conditioner and mixer, fully conditioning and mixing the flow prior to measurement. For the analysis, we used Reynolds-averaged Wavier-Stokes equations and k-$\omega$ turbulence model. The equations were fully transformed into the computational domain, the pressure-velocity coupling was made through SIMPLER algorithm, and the equations were discretized using finite analytic solutions of the liberalized equations(Finite Analytic Method). To control the separation phenomenon on the cone surface, we proposed a new shape of cone, and analyzed the flowfield in the new flowmeter system, and found the improvement on the performance of the new cone flowmeter.

  • PDF

Process Analysis for Rheology Forming Considering Flow and Solidification Phenomena in Lower Solid Fraction (저고상율 소재의 유동 및 응고현상을 고려한 레올로지 성형공정해석)

  • Jung, Young-Jin;Cho, Ho-Sang;Kang, Chung-Gil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.156-164
    • /
    • 2001
  • Two-dimensional solidification analysis during rheology forming process of semi-solid aluminum alloy has been studied. Two-phase fluid flow model to investigate the velocity field and temperature distribution is proposed. The proposed mathematical model is applied to the die shape of the two types. To calculate the velocity and temperature fields during rheology forming process, the earth governing equation correspondent to the liquid and solid region are adapted. Therefore, each numerical models considering the solid and liquid region existing within the semi-solid material have been developed to predict the deflect of rheology forming gnarls. The Arbitrary Boundary Maker And Cell (ABMAC) method is employed to solve the two-phase flow model of the Navier-Stokes equation. Theoretical model on the basis of the two-phase flow model is the mixture rule of solid and liquid phases. This approach is based on the liquid and solid viscosity. The liquid viscosity is pure liquid state value, however solid viscosity is considered as a function of the shear rate, solid fraction and power law curves.

  • PDF

Hydrogel microrheology near the liquid-solid transition

  • Larsen, Travis;Schultz, Kelly;Furst, Eric M.
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.3
    • /
    • pp.165-173
    • /
    • 2008
  • Multiple particle tracking microrheology is used to characterize the viscoelastic properties of biomaterial and synthetic polymer gels near the liquid-solid transition. Probe particles are dispersed in the gel precursors, and their dynamics are measured as a function of the extent of reaction during gel formation. We interpret the dynamics using the generalized Stokes-Einstein relationship (GSER), using a form of the GSER that emphasizes the relationship between the probe particle mean-squared displacement and the material creep compliance. We show that long-standing concepts in gel bulk rheology are applicable to microrheological data, including time-cure superposition to identify the gel point and critical scaling exponents, and the power-law behavior of incipient network's viscoelastic response. These experiments provide valuable insight into the rheology, structure, and kinetics of gelling materials, and are especially powerful for studying the weak incipient networks of dilute gelators, as well as scarce materials, due to the small sample size requirements and rapid data acquisition.

Settling Velocity of Phytoplankton in the Nakdong-River (낙동강 수계의 식물플랑크톤 침강속도)

  • Jung, Yukyong;Kim, Bomchul;Shin, Myoungsun;Park, Ju-Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.807-813
    • /
    • 2007
  • Settling velocity is one of major parameters determining algal biomass in water quality modeling. In this study, the settling velocity of phytoplankton was measured in reservoir and stream sites of the Nakdong River, Korea. Settling velocities of various phytoplankton species were determined by measuring algal cell biomass settled in a sedimentation cylinder. Mean settling velocities were $0.22m\;day^{-1}$ in reservoir sites and $0.33m\;day^{-1}$ in stream sites, which were relatively higher compared with other default values suggested by water quality models (e.g. $0.1m\;day^{-1}$ in CE-QUAL-W2). The lower settling velocity in reservoirs than in stream implies the adaptation of phytoplakton to low turbulence in lentic environments. Cyanobacteria showed lower settling velocity ($0.2m\;day^{-1}$) than diatoms ($0.3m\;day^{-1}$), and this phenomenon may have resulted from buoyancy mechanisms of cyanobacteria. Cell volume did not show a significant correlation with settling velocity in this study, implying that conformation factors of colonies or other factors had large effects on settling velocity of algal cells as well as cell size. The result of this study may suggest proper coefficients of settling velocity of phytoplankton in the calibration of water quality model.

A study for gas distribution in separators of molten carbonate fuel cell (용융 탄산염 연료전지의 분리판 내 연료 분배 해석)

  • Park, Joonho;Cha, Suk Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.82.2-82.2
    • /
    • 2011
  • A channel design which is closely related with the mass transport overpotential is one of the most important procedures to optimize the whole fuel cell performance. In this study, three dimensional results of a numerical study for gas distribution in channels of a molten carbonate fuel cell (MCFC) unit cell for a 1kW class stack was presented. The relationship between the fuel and air distribution in the anode and cathode channels of the unit cell and the electric performance was observed. A charge balance model in the electrodes and the electrolyte coupled with a heat transfer model and a fluid flow model in the porous electrodes and the channels was solved for the mass, momentum, energy, species and charge conservation. The electronic and ionic charge balance in the anode and cathode current feeders, the electrolyte and GDEs were solved for using Ohm's law, while Butler-Volmer charge transfer kinetics described the charge transfer current density. The material transport was described by the diffusion and convection equations and Navier-Stokes equations govern the flow in the open channel. It was assumed that heat is produced by the electrochemical reactions and joule heating due to the electrical currents.

  • PDF

A numerical investigation of the effects of Reynolds number on vortex-induced vibration of the cylinders with different mass ratios and frequency ratios

  • Kang, Zhuang;Zhang, Cheng;Chang, Rui;Ma, Gang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.835-850
    • /
    • 2019
  • The numerical simulations for the Vortex-induced Vibration (VIV) of the cylinders with different combinations of mass ratio and frequency ratio were performed under the Reynolds (Re) number ranges of 1450-10200, 5800-40800 and 13050-91800 by using the embedded programs in OpenFoam. By combining with the modified SST k-ω turbulence model, the coupled Unsteady Reynolds-Average Navier-Stokes equations and double-degree-of-freedom vibration equations were solved. After analyzing the results, it is found that the some characteristics of the VIV have changed with the increase of the range of Re number, and the effects of Re number on vibration characteristics are also different under different combinations of mass ratio and frequency ratio. On this basis, the influence law of Re number on the characteristics of VIV of the cylinders is summarized, which can provide a reference for the research of VIV under higher Re number.