Browse > Article
http://dx.doi.org/10.3744/SNAK.2012.49.3.247

Study on the Effects of Surface Roughness and Turbulence Intensity on Dam-break Flows  

Park, Il-Ryong (Department of Naval Architecture and Ocean Engineering, Dong-Eui University)
Jung, Kwang-Hyo (Department of Naval Architecture and Ocean Engineering, Dong-Eui University)
Publication Information
Journal of the Society of Naval Architects of Korea / v.49, no.3, 2012 , pp. 247-253 More about this Journal
Abstract
Dam-break flows, a type of very shallow gravity-driven flow, are substantially influenced by resistance forces due to viscous friction and turbulence. Assuming turbulent flow, the main focus of this study is to validate the increase of drag forces caused by surface roughness and especially turbulence intensity. A Reynolds Averaged Navier-Stokes(RANS) approach with the standard k-${\varepsilon}$ turbulence model is used for this study, where the free surface motion is captured by using a volume of fluid(VOF) method. Surface roughness effects are considered through the law of the wall modified for roughness, while the initial turbulence intensity which determines the lowest level of turbulence in the flow domain of interest is used for the variation of turbulence intensity. It has been found that the numerical results at higher turbulence intensities show a reasonably good agreement with the physical aspects shown by two different dam-break experiments without and with the impact of water.
Keywords
Dam-break flow; Surface roughness; Turbulence intensity; VOF method; Validation; Free surface;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Violeau, D. & Issa, R., 2007. Numerical Modeling of Complex Turbulent Free-Surface Flows with the SPH Method: an overview. International Journal for Numerical Methods in Fluids, 53(2), pp.277-304.   DOI   ScienceOn
2 Zhou, Z.Q. De Kat, J.O. & Buchner, B., 1999. A nonlinear 3-D Approach to Simulate Green Water Dynamics on Deck. Proceedings of the 7th International Conference on Numerical Ship Hydrodynamics, Nantes, FRANCE. pp.5.1-1, 15.
3 Tsui, Y.Y. Lin, S.W. & Wu, T.C., 2009. Flux-blending schemes for interface capture in two-fluid flows. International Journal of Heat and Mass Transfer, 52(23-24), pp.5547-5556.   DOI   ScienceOn
4 Ubbink, O. & Issay, R.I., 1999. A Method for Capturing Sharp Fluid Interfaces on Arbitrary Meshes. Journal of Computational Physics, 153(1), pp.26-50.   DOI   ScienceOn
5 Van Leer, B.J., 1979. Towards the Ultimate Conservative Difference Scheme. V. A Second Order Sequel to Godunov's Method. Journal of Computational Physics, 32, pp.101-136.   DOI   ScienceOn
6 Cebeci, T. & Bradshaw, P., 1977. Momentum Transfer in Boundary Layers. Hemisphere publishing Corporation, New York.
7 Colagrossi, A. & Landrini, M., 2003. Numerical Simulation of Interfacial Flows by Smoothed Particle Hydrodynamics. Journal of Computational Physics, 191(2), 448-475.   DOI   ScienceOn
8 Colicchio, G. Colagrossi, A. Greco, M. & Landrini, M., 2002. Free-Surface Flow after a Dam Break: a Comparative Study. Ship Technology Research, 49(3), pp.95-104.
9 Cox, D.T. Kobayashi, N. & Okayasu, A., 1994. Vertical variations of fluid velocities and shear stress in surf zones. Proc. 24th Intl Conf. Coastal Engng ASCE, pp.98-112.
10 Ferziger, J.H. & Peric, M., 1996. Computational Methods for Fluid Dynamics. Springer: Heidelberg.
11 Greco, M. Faltinsen, O.M. & Landrini, M., 2005. Shipping of water on a two-dimensional structure. Journal of Fluid Mechanics, 525, pp.309-332.   DOI   ScienceOn
12 Park, I.R. Kim, K.S. Kim, J. & Van, S.H., 2010. Numerical Simulation of Free Surface Flow Using a Refined HRIC VOF Method. Journal of the Society of Naval Architects of Korea, 47(3), pp.279-290.   DOI   ScienceOn
13 Martine, J.C. & Moyce, W.J., 1952. An Experimental Study of the Collapse Liquid Columns on a Rigid Horizontal Plate. Phil. Trans. Roy. Soc. London A. Math., Phys. Eng. Sci, 244, pp.312-324.   DOI
14 Nikuradse, J., 1933. Stromungsgesetze in rauhen Rohren. Forschung Arb. Ing.-Wes. No. 361.
15 Park, I.R. Kim, K.S. Kim, J. & Van, S.H., 2009. A Volume-Of-Fluid Method for Incompressible Free-Surface Flows. International Journal for Numerical Methods in Engineering, 61(12), pp.1331-1362.   DOI   ScienceOn
16 Park, I.R. Kim, W.J. Kim, J. & Van, S.H., 2005. A Study on a VOF Method for the Improvement of Free Surface Capturing. Journal of the Society of Naval Architects of Korea, 42(2), pp.88-97.   DOI   ScienceOn
17 Ritter, A., 1892. Die Fortpflanzung der Wasserwellen:. Z. Vereines Deutsch. Ing, 36(33), pp.947-954.
18 Shin, S.M. Kim, I.C. & Kim, Y.G., 2010. Numerical Simulation of Free Surface Flows Using the Roe's Flux-difference Splitting Scheme. Journal of the Society of Naval Architects of Korea, 47(1), pp.11-19.   DOI   ScienceOn
19 Kim, C.H. Lee, Y.G. & Jeong, K.L., 2011. A Study on the Numerical Simulation Method of Two-dimensional Incompressible Fluid Flows using ISPH Method. Journal of the Society of Naval Architects of Korea, 48(6), pp.560-568.   DOI   ScienceOn
20 Greco, M. Landrini, M. & Faltinsen, O.M., 2004. Impact Flows and Loads on Ship-Deck Structures. Journal of Fluids and Structures, 19(3), 251-275.   DOI   ScienceOn
21 Kim, Y.I. Nam, B.W. & Kim, Y.H., 2007. Study on the Effects of Computational Parameters in SPH Method. Journal of the Society of Naval Architects of Korea, 44(4), pp.398-407.   DOI   ScienceOn
22 Launder, B.E. & Spalding, D.B., 1974. The Numerical Computation of Turbulent Flows. Computer Methods in Applied Mechanics and Engineering, 3(2), pp.269-289.   DOI   ScienceOn