• 제목/요약/키워드: stock indexes

검색결과 57건 처리시간 0.04초

축산물 브랜드에 대한 고객기반브랜드자산이 브랜드 신뢰, 고객만족도 및 재구매의도에 미치는 영향 - 횡성한우를 중심으로 - (The Effects of Customer-Based Brand Equity(CBBE) for Stock Farm Products Brand on Brand Trust, Customer Satisfaction and Repurchase Intentions - Focus on Hoengsung Hanwoo Brand -)

  • 권영국;김영중
    • 한국조리학회지
    • /
    • 제22권3호
    • /
    • pp.224-239
    • /
    • 2016
  • 본 연구에서는 횡성한우를 중심으로 축산물 브랜드의 고객기반브랜드자산이 브랜드 신뢰와 고객만족도 및 재구매의도에 미치는 인과관계를 고찰하였다. 실증연구를 위해 확보된 301개의 표본을 바탕으로 연구모형의 신뢰성, 적합성 등을 검토하였고, 구조방정식 모형을 사용하여 총 5개의 가설을 검증하였으며, 모형의 적합도는 ${\chi}^2=635.175$(p<0.001), df=233, CMIN/DF=2.726, GFI=0.863, NFI=0.859, CFI=0.903, TLI=0.885, RMSEA=0.068로 조사되었다. 연구결과, 고객기반브랜드자산의 하위 차원인 지각된 품질(${\beta}=.562$), 브랜드 이미지(${\beta}=.377$)는 브랜드 신뢰에 유의한 영향을 주는 것으로 조사되었으며, 이러한 브랜드 신뢰는 고객만족도(${\beta}=.525$)와 재구매의도(${\beta}=.669$)에 유의한 영향을 주는 것으로 나타났다. 따라서 본 결과를 통해 확고한 브랜드관리는 브랜드 신뢰를 형성하게 되어 결과적으로 고객만족도와 재구매 의도에 긍정적인 영향을 미치는 것을 확인할 수 있었다. 아울러 지역브랜드 한우를 지속적으로 구매하기 위한 효과적인 마케팅 관리의 전략 수립과 함께 지역경제의 활성화를 위한 시사점을 제시하였다.

투자자별 거래정보와 머신러닝을 활용한 투자전략의 성과 (Performance of Investment Strategy using Investor-specific Transaction Information and Machine Learning)

  • 김경목;김선웅;최흥식
    • 지능정보연구
    • /
    • 제27권1호
    • /
    • pp.65-82
    • /
    • 2021
  • 주식시장에 참여하는 투자자들은 크게 외국인투자자, 기관투자자, 그리고 개인투자자로 구분된다. 외국인투자자 같은 전문투자자 집단은 개인투자자 집단과 비교하여 정보력과 자금력에서 우위를 보이고 있으며, 그 결과 시장 참여자들 사이에는 외국인투자자들이 좋은 투자 성과를 보이는 것으로 알려져 있다. 외국인 투자자들은 근래에는 인공지능을 이용한 투자를 많이 하고 있다. 본 연구의 목적은 투자자별 거래량 정보와 머신러닝을 결합하는 투자전략을 제안하고, 실제 주가와 투자자별 거래량 데이터를 이용하여 제안 모형의 포트폴리오 투자 성과를 분석하는 것이다. 일별 투자자별 매수 수량과 매도 수량 정보는 한국거래소에서 공개하고 있는 자료를 활용하였으며, 여기에 인공신경망을 결합하여 최적의 포트폴리오 전략을 도출하고자 하였다. 본 연구에서는 자기 조직화 지도 모형 인공신경망을 이용하여 투자자별 거래량 데이터를 그룹화하고 그룹화한 데이터를 변환하여 오류역전파 모형을 학습하였다. 학습 후 검증 데이터 예측결과로 매월 포트폴리오 구성을 하도록 개발하였다. 성과 분석을 위해 포트폴리오의 벤치마크를 지정하였고 시장 수익률 비교를 위해 KOSPI200, KOSPI 지수 수익률도 구하였다. 포트폴리오의 동일배분 수익률, 복리 수익률, 연평균 수익률, MDD, 표준편차, 샤프지수, 벤치마크로 지정한 시가총액 상위 10종목의 Buy and Hold 수익률 등을 사용하여 성과 분석을 진행하였다. 분석 결과 포트폴리오가 벤치마크 대비 2배 수익률을 올렸으며 시장 수익률보다 좋은 성과를 보였다. MDD와 표준편차는 포트폴리오와 벤치마크가 비슷한 결과로 성과 대비 비교한다면 포트폴리오가 좋은 성과라고 할 수 있다. 샤프지수도 포트폴리오가 벤치마크와 시장 결과보다 좋은 성과를 내었다. 이를 통해 머신러닝과 투자자별 거래정보 분석을 활용한 포트폴리오 구성 프로그램 개발의 방향을 제시하였고 실제 주식 투자를 위한 프로그램 개발에 활용할 수 있음을 보였다.

일본의 전국 주생활기본계획에 따른 지역 주생활기본계획의 수립특성 (The Characteristics of the Prefectural Basic Plans according to the National Basic Plan for Housing in Japan)

  • 염철호
    • 한국주거학회논문집
    • /
    • 제22권5호
    • /
    • pp.111-119
    • /
    • 2011
  • In recent years, the insistence that the central government should hand over the right of establishing and managing housing policies to local governments is growing. And, it is needed that local governments should pursue their own original housing policies. The purpose of this study is to explore the characteristics of the prefectural plans of the national basic act for housing in Japan to envision the future directions of regional housing policies. This study analyzed the structure, main policy contents, and the outcome indexes of all 47 prefectures' plans in Japan. The major results of this study are as follows. 1) The central government and local governments shared their roles appropriately. In addition, the local governments proactively demonstrated the unique quality of their regions when establishing their housing policies. 2) In promoting housing policies, they focused on the housing stock and the market including both public and private sectors. 3) The policy-oriented goals and performance management practices were clearly presented.

Extended Forecasts of a Stock Index using Learning Techniques : A Study of Predictive Granularity and Input Diversity

  • ;이동윤
    • Asia pacific journal of information systems
    • /
    • 제7권1호
    • /
    • pp.67-83
    • /
    • 1997
  • The utility of learning techniques in investment analysis has been demonstrated in many areas, ranging from forecasting individual stocks to entire market indexes. To date, however, the application of artificial intelligence to financial forecasting has focused largely on short predictive horizons. Usually the forecast window is a single period ahead; if the input data involve daily observations, the forecast is for one day ahead; if monthly observations, then a month ahead; and so on. Thus far little work has been conducted on the efficacy of long-term prediction involving multiperiod forecasting. This paper examines the impact of alternative procedures for extended prediction using knowledge discovery techniques. One dimension in the study involves temporal granularity: a single jump from the present period to the end of the forecast window versus a web of short-term forecasts involving a sequence of single-period predictions. Another parameter relates to the numerosity of input variables: a technical approach involving only lagged observations of the target variable versus a fundamental approach involving multiple variables. The dual possibilities along each of the granularity and numerosity dimensions entail a total of 4 models. These models are first evaluated using neural networks, then compared against a multi-input jump model using case based reasoning. The computational models are examined in the context of forecasting the S&P 500 index.

  • PDF

한국 주식 데이터를 이용한 서브시퀀스 매칭 방법의 효과성 평가 (Effectiveness Evaluations of Subsequence Matching Methods Using KOSPI Data)

  • 유승근;이상호
    • 정보처리학회논문지D
    • /
    • 제12D권3호
    • /
    • pp.355-364
    • /
    • 2005
  • 기존의 서브시퀀스 매칭 방법은 검색을 효율적으로 수행하기 위한 인덱스 구성 방법에 대하여 연구하였으며, 서브시퀀스 매칭 방법의 효과성 평가를 고려하지 않았다. 본 논문은 서브시퀀스 매칭 방법의 효과성에 대하여 고려하였으며, 서브시퀀스 매칭 방법의 효과성을 평가 할 수 있는 2가지 척도를 제안한다. 한국 주식 데이터와 5가지 서브시퀀스 매칭 방법에 대하여 제안된 효과성 측정 방안을 적용하였으며, 그 결과를 분석하였다. 실험 결과, 정규화를 지원하는 서브시퀀스 매칭 방법과 스케일링과 쉬프팅 변환을 지원하는 서브시퀀스 매칭 방법이 상대적으로 효과적인 서브시퀀스를 검색하였다.

금융 실현변동성을 위한 내재변동성과 인터넷 검색량을 활용한 딥러닝 (Deep learning forecasting for financial realized volatilities with aid of implied volatilities and internet search volumes)

  • 신지원;신동완
    • 응용통계연구
    • /
    • 제35권1호
    • /
    • pp.93-104
    • /
    • 2022
  • S&P 500과 RUSSELL 2000, DJIA, Nasdaq 100 4가지 미국 주가지수의 실현변동성(realized volatility, RV)을 예측하는데 있어서 사람들의 관심 지표로 삼을 수 있는 인터넷 검색량(search volume, SV) 지수와 내재변동성(implied volatility, IV)를 이용하여 LSTM 딥러닝(deep learning) 방법으로 RV의 예측력을 높이고자하였다. SV을 이용한 LSTM 방법의 실현변동성 예측력이 기존의 기본적인 vector autoregressive (VAR) 모형, vector error correction (VEC)보다 우수하였다. 또한, 최근 제안된 RV와 IV의 공적분 관계를 이용한 vector error correction heterogeneous autoregressive (VECHAR) 모형보다도 전반적으로 예측력이 더 높음을 확인하였다.

지식 누적을 이용한 실시간 주식시장 예측 (A Real-Time Stock Market Prediction Using Knowledge Accumulation)

  • 김진화;홍광헌;민진영
    • 지능정보연구
    • /
    • 제17권4호
    • /
    • pp.109-130
    • /
    • 2011
  • 연속발생 데이터는 데이터의 원천으로부터 데이터 저장소로 연속적으로 축적이 되는 데이터를 말한다. 이렇게 축적된 데이터의 크기는 시간이 지남에 따라 점점 커진다. 또한 이러한 대용량 데이터에서 정보를 추출하기 위해서는 저장공간, 시간, 그리고 많은 자원이 필요하다. 이러한 연속발생 데이터의 특성은 시간이 지남에 따라 축적된 대용량 데이터의 이용을 어렵고 고비용이 되게 한다. 만약 정보나 패턴을 추출할 때 누적된 전체 발생 데이터 중에서 최근의 일부만 사용 한다면 적은 일부 표본의 사용의 문제로 인하여 전체 데이터 사용에서 발견될 수 있는 유용한 정보의 유실이 있을 수 있다. 이러한 문제점을 해결하기 위해서 본 연구는 연속발생 데이터를 발생 시점에서 계속 모으기 보다 이러한 발생되는 데이터에서 규칙을 추출하여 효율적으로 지식을 관리하고자 한다. 이 방법은 기존의 방법에 비하여 적은 양의 데이터 저장공간을 필요로 한다. 또한 이렇게 축적된 규칙집합은 미래에 예측을 위해서 언제든 실시간 예측을 할 수 있게 준비가 된다. 여러 예측 모델을 결합시키는 방법인 앙상블 이론에 의하면 본 연구가 제시하는 데로 체계적으로 규칙집합을 시간에 따라 융합시킬 경우 더 나은 예측 성과가 가능하다. 본 연구는 주식시장의 변동성을 예측하기 위하여 주식시장 데이터를 사용하였다. 본 연구는 이 데이터를 이용해 본 연구가 제시하는 방법과 기존의 방법의 예측 정확도를 비교 하였다.

방향성매매를 위한 지능형 매매시스템의 투자성과분석 (Analysis of Trading Performance on Intelligent Trading System for Directional Trading)

  • 최흥식;김선웅;박성철
    • 지능정보연구
    • /
    • 제17권3호
    • /
    • pp.187-201
    • /
    • 2011
  • 방향성(Direction)과 변동성(Volatility)에 대한 분석은 증권투자를 위한 시장분석의 기초가 된다. 변동성분석이 옵션 투자에서 중요하다면 주식이나 주가지수선물투자는 방향성분석에 의하여 투자성과가 결정된다. 기존의 금융분석에서 기계학습을 이용한 방향성에 대한 연구는 주가나 투자위험의 예측을 중심으로 이루어졌으며, 최근에 와서야 실전투자를 위한 매매시스템(trading system) 개발에 대한 연구가 이루어지고 있다. 인공지능형 주가예측모형에서는 ANN(artificial neural networks), fuzzy system, SVM(Support Vector Machine) 등의 기법이 주로 활용되고 있다. 본 연구에서는 방향성매매를 위한 지능형 기계학습방법 중에서도 패턴인식에서 좋은 성과를 보이고 있는 은닉마코프 모형(Hidden Markov Model)을 이용한다. 실무적으로는 방향성 예측을 위해 주로 주가의 추세분석(Trend Analysis)을 활용한다. 다양한 기술적 지표를 이용한 추세분석에 기반한 시스템트레이딩(System Trading) 기법은 실전투자에서 점차 확대추세에 있다. 본 연구에서는 시스템트레이딩 기법 중 실무에서 많이 이용되는 이동평균교차전략(moving average cross)에 연속 은닉마코프모형을 적용한 지능형 매매시스템을 제안하고, 실제 주가자료를 이용한 시뮬레이션 결과를 제시한다. 세계적 선물시장으로 성장한 KOSPI200 선물시장에서 제안된 매매시스템의 장기간의 투자성과를 분석하기 위하여 지난 21년 동안의 KOSPI200 주가지수자료를 실증 분석하였다. 분석결과는 KOSPI200 주가지수선물의 방향성매매에서 제안된 CHMM기반 지능형 매매시스템이 실전에서 일반적으로 활용되는 시스템트레이딩 기법의 투자성과를 개선할 수 있음을 보여주었다.

지능형 전망모형을 결합한 로보어드바이저 알고리즘 (Robo-Advisor Algorithm with Intelligent View Model)

  • 김선웅
    • 지능정보연구
    • /
    • 제25권2호
    • /
    • pp.39-55
    • /
    • 2019
  • 최근 은행과 증권회사를 중심으로 다양한 로보어드바이저 금융상품들이 출시되고 있다. 로보어드바이저는 사람 대신 컴퓨터가 포트폴리오 자산배분에 대한 투자 결정을 실행하기 때문에 다양한 자산배분 알고리즘이 활용되고 있다. 본 연구에서는 대표적 로보어드바이저 알고리즘인 블랙리터만모형의 강점을 살리면서 객관적 투자자 전망을 도출할 수 있는 지능형 전망모형을 제안하고 이를 내재균형수익률과 결합하여 최종 포트폴리오를 도출하는 로보어드바이저 자산배분 알고리즘을 새로이 제안하며, 실제 주가자료를 이용한 실증분석 결과를 통해 전문가의 주관적 전망을 대신할 수 있는 지능형 전망모형의 실무적 적용 가능성을 보여주고자 한다. 그동안 주가 예측에서 우수한 성과를 보여주었던 기계학습 방법 중 SVM 모형을 이용하여 각 자산별 기대수익률에 대한 예측과 예측 확률을 도출하고 이를 각각 기대수익률에 대한 투자자 전망과 전망에 대한 신뢰도 수준의 입력변수로 활용하는 지능형 전망모형을 제안하였다. 시장포트폴리오로부터 도출된 내재균형수익률과 지능형 전망모형의 기대수익률, 확률을 결합하여 최종적인 블랙리터만모형의 최적포트폴리오를 도출하였다. 주가자료는 2008년부터 2018년까지의 132개월 동안의 8개의 KOSPI 200 섹터지수 월별 자료를 분석하였다. 블랙리터만모형으로 도출된 최적포트폴리오의 결과가 기존의 평균분산모형이나 리스크패리티모형 등과 비교하여 우수한 성과를 보여주었다. 구체적으로 2008년부터 2015년까지의 In-Sample 자료에서 최적화된 블랙리터만모형을 2016년부터 2018년까지의 Out-Of-Sample 기간에 적용한 실증분석 결과에서 다른 알고리즘보다 수익과 위험 모두에서 좋은 성과를 기록하였다. 총수익률은 6.4%로 최고 수준이며, 위험지표인 MDD는 20.8%로 최저수준을 기록하였다. 수익과 위험을 동시에 고려하여 투자 성과를 측정하는 샤프비율 역시 0.17로 가장 좋은 결과를 보여주었다. 증권계의 애널리스트 전문가들이 발표하는 투자자 전망자료의 신뢰성이 낮은 상태에서, 본 연구에서 제안된 지능형 전망모형은 현재 빠른 속도로 확장되고 있는 로보어드바이저 관련 금융상품을 개발하고 운용하는 실무적 관점에서 본 연구는 의의가 있다고 판단된다.

중국의 창업판시장과 중소벤처기업의 상장전후 경영성과 분석에 관한 연구 (Chinese Growth Enterprise Market and Business Performance Analysis on Small and Medium Sized Firms and Venture Firms Before and After Listing)

  • 최문;손종원;장석주
    • 벤처창업연구
    • /
    • 제9권3호
    • /
    • pp.129-138
    • /
    • 2014
  • 글로벌 경제위기이후 중국은 세계경제의 두 축의 하나로 부상하였으며, 한국경제에 가장 큰 영향을 미치는 국가로 자리매김 하고 있다. 그럼에도 불구하고, 현재까지 한국에서는 중국의 금융시장 특히는 자본시장에 관한 연구가 매우 적은 실정이다. 본 연구는 중국 심천증권거래소에 출범한 창업판시장을 살펴보고, 중국 중소벤처기업의 상장전후 경영성과를 비교분석하였다. 기술혁신 벤처기업과 고성장형 중소기업들의 자금조달을 목적으로 하는 중국 창업판시장에서 기업의 상장요건은 상해와 심천 증권거래소의 주시장보다 완화되어 있으며, 상장절차도 간소화되어 있다. 따라서 중국의 많은 기업들이 상장하고자 하며, 상장 경쟁도 매우 치열하다. 그리고 창업판시장에 최초로 상장한 36개 기업의 상장 전후의 경영성과를 살펴본 결과, 자기자본 순이익률 부채비율 영업이익증가율 등 3개 지표는 모두 크게 하락하였으며, 거의 모든 기업에서 이런 현상이 나타났다. 즉, 중국 창업판시장에 상장한 중소벤처기업들의 수익성과 성장성은 상장후 급속하게 하락하였으며, 많은 자금조달로 인하여 안정성만이 개선되어 있었다. 나아가 이러한 현상은 중소벤처기업들이 상장을 위하여 상장전 경영성과를 과대 포장한데서 기인한 것으로 분석되었다. 따라서 중국 증권감독관리위원회는 향후 상장기업에 대한 회계심사기준과 심사제도를 강화하여야 할 것이며, 분식회계기업에 대해서는 엄중한 제재조치를 실시하여 건전한 자본시장 풍토를 정착시켜야 할 것이다.

  • PDF