• Title/Summary/Keyword: stochastic simulation.

Search Result 785, Processing Time 0.03 seconds

A Study on the Analysis of Stochastic Dynamic System (확률적 동적계의 해석에 관한 연구)

  • Nam, S.H.;Kim, H.R.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.4
    • /
    • pp.127-134
    • /
    • 1995
  • The dynamic characteristics of a system can be critically influenced by system uncertainty, so the dynamic system must be analyzed stochastically in consideration of system uncertainty. This study presents a generalized stochastic model of dynamic system subjected to bot external and parametric nonstationary stochastic input. And this stochastic system is analyzed by a new stochastic process closure method and moment equation method. The first moment equation is numerically evaluated by Runge-Kutta method. But the second moment equation is founded to constitute an infinite coupled set of differential equations, so this equations are numerically evaluated by cumulant neglect closure method and Runge-Kutta method. Finally the accuracy of the present method is verified by Monte Carlo simulation.

  • PDF

Stochastic finite element analysis of composite plates considering spatial randomness of material properties and their correlations

  • Noh, Hyuk-Chun
    • Steel and Composite Structures
    • /
    • v.11 no.2
    • /
    • pp.115-130
    • /
    • 2011
  • Considering the randomness of material parameters in the laminated composite plate, a scheme of stochastic finite element method to analyze the displacement response variability is suggested. In the formulation we adopted the concept of the weighted integral where the random variable is defined as integration of stochastic field function multiplied by a deterministic function over a finite element. In general the elastic modulus of composite materials has distinct value along an individual axis. Accordingly, we need to assume 5 material parameters as random. The correlations between these random parameters are modeled by means of correlation functions, and the degree of correlation is defined in terms of correlation coefficients. For the verification of the proposed scheme, we employ an independent analysis of Monte Carlo simulation with which statistical results can be obtained. Comparison is made between the proposed scheme and Monte Carlo simulation.

Stochastic Finite Element Aalysis of Space Truss by Neumann Expansion Method (뉴우먼 확장법에 의한 3차원 트러스의 확률유한요소해석)

  • 정영수;김기정
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.04a
    • /
    • pp.117-124
    • /
    • 1993
  • The Neumann Expansion method has been used for evaluating the response variability of three dimensional truss structure resulting from the spatial variability of material properties with the aid of the finite element method, and in conjunction with the direct Monte Carlo simulation methods. The spatial variabilites are modeled as three-dimensional stochastic field. Yamazaki 〔1〕 has extended the Neumann Expansion method to the plane-strain problem to obtain the response variability of 2 dimensional stochastic systems. This paper presents the extension of the Neumann Expansion method to 3 dimensional stochastic systems. The results by the NEM are compared with those by the deterministic finite element analysis and by the direct Monte Carlo simulation method

  • PDF

Stochastic finite element method homogenization of heat conduction problem in fiber composites

  • Kaminski, Marcin
    • Structural Engineering and Mechanics
    • /
    • v.11 no.4
    • /
    • pp.373-392
    • /
    • 2001
  • The main idea behind the paper is to present two alternative methods of homogenization of the heat conduction problem in composite materials, where the heat conductivity coefficients are assumed to be random variables. These two methods are the Monte-Carlo simulation (MCS) technique and the second order perturbation second probabilistic moment method, with its computational implementation known as the Stochastic Finite Element Method (SFEM). From the mathematical point of view, the deterministic homogenization method, being extended to probabilistic spaces, is based on the effective modules approach. Numerical results obtained in the paper allow to compare MCS against the SFEM and, on the other hand, to verify the sensitivity of effective heat conductivity probabilistic moments to the reinforcement ratio. These computational studies are provided in the range of up to fourth order probabilistic moments of effective conductivity coefficient and compared with probabilistic characteristics of the Voigt-Reuss bounds.

APPLYING A STOCHASTIC LINEAR SCHEDULING METHOD TO PIPELINE CONSTRUCTION

  • Fitria H. Rachmat;Lingguang Song;Sang-Hoon Lee
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.907-913
    • /
    • 2009
  • Pipeline construction is a highly repetitive and resource-intensive process that is exposed to various constraints and uncertainties in the working environment. Effective look-ahead scheduling based on the most recent project performance data can greatly improve project execution and control. This study enhances the traditional linear scheduling method with stochastic simulation to incorporate activity performance uncertainty in look-ahead scheduling. To facilitate the use of this stochastic method, a computer program, Stochastic Linear Scheduling Method (SLSM), was designed and implemented. Accurate look-ahead scheduling can help schedulers to better anticipate problem areas and formulate new plans to improve overall project performance.

  • PDF

A Development of SDS Algorithm for the Improvement of Convergence Simulation (실시간 계산에서 수령속도 개선을 위한 SDS 알고리즘의 개발)

  • Lee, Young-J.;Jang, Yong-H.;Lee, Kwon-S.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.699-701
    • /
    • 1997
  • The simulated annealing(SA) algorithm is a stochastic strategy for search of the ground state and a powerful tool for optimization, based on the annealing process used for the crystallization in physical systems. It's main disadvantage is the long convergence time. Therefore, this paper proposes a stochastic algorithm combined with conventional deterministic optimization method to reduce the computation time, which is called SDS(Stochastic-Deterministic-Stochastic) method.

  • PDF

Optimal Policy for (s, S) Inventory System Characterized by Renewal Arrival Process of Demand through Simulation Sensitivity Analysis (수요가 재생 도착과정을 따르는 (s, S) 재고 시스템에서 시뮬레이션 민감도 분석을 이용한 최적 전략)

  • 권치명
    • Journal of the Korea Society for Simulation
    • /
    • v.12 no.3
    • /
    • pp.31-40
    • /
    • 2003
  • This paper studies an optimal policy for a certain class of (s, S) inventory control systems, where the demands are characterized by the renewal arrival process. To minimize the average cost over a simulation period, we apply a stochastic optimization algorithm which uses the gradients of parameters, s and S. We obtain the gradients of objective function with respect to ordering amount S and reorder point s via a combined perturbation method. This method uses the infinitesimal perturbation analysis and the smoothed perturbation analysis alternatively according to occurrences of ordering event changes. The optimal estimates of s and S from our simulation results are quite accurate. We consider that this may be due to the estimated gradients of little noise from the regenerative system simulation, and their effect on search procedure when we apply the stochastic optimization algorithm. The directions for future study stemming from this research pertain to extension to the more general inventory system with regard to demand distribution, backlogging policy, lead time, and inter-arrival times of demands. Another direction involves the efficiency of stochastic optimization algorithm related to searching procedure for an improving point of (s, S).

  • PDF

ADAPTIVE CONTROL USING NEURAL NETWORK FOR MINIMUM-PHASE STOCHASTIC NONLINEAR SYSTEM

  • Seok, Jinwuk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.18-18
    • /
    • 2000
  • In this paper, some geometric condition for a stochastic nonlinear system and an adaptive control method for minimum-phase stochastic nonlinear system using neural network are provided. The state feedback linearization is widely used technique for excluding nonlinear terms in nonlinear system. However, in the stochastic environment, even if the minimum phase linear system derived by the feedback linearization is not sufficient to be controlled robustly. the viewpoint of that, it is necessary to make an additional condition for observation of nonlinear stochastic system, called perfect filtering condition. In addition, on the above stochastic nonlinear observation condition, I propose an adaptive control law using neural network. Computer simulation shows that the stochastic nonlinear system satisfying perfect filtering condition is controllable and the proposed neural adaptive controller is more efficient than the conventional adaptive controller

  • PDF

Design of Stochastic Observer for The Optimal Control of A Flexible Manipulator (유연성 매니퓨레이터의 최적제어를 위한 STOCHASTIC관측기의 설계)

  • 남호범;박종국
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.9
    • /
    • pp.753-760
    • /
    • 1989
  • A method is suggested to design a stochastic observer which can be used as a state estimator for the optimal control of a one link flexible manipulator. This stochastic observer is derived from unifying the two concepts of reduced-state deterministic observer theory and optimal Kalman filtering theory. In estimating state variables for the optimal control, instead of using the two different state estimators for the deterministic system with noise free measurements and stochastic system with noise measurements, only one stochastic observer is designed which is to be used in both systems commonly. Through the simulation, it has been shown that the flexible system with the stochastic observer is similar in characteristics to the flexible system assuming that all states can be measured.

  • PDF

A Study on the Sequential Regenerative Simulation (순차적인 재생적 시뮬레이션에 관한 연구)

  • JongSuk R.;HaeDuck J.
    • Journal of the Korea Society for Simulation
    • /
    • v.13 no.2
    • /
    • pp.23-34
    • /
    • 2004
  • Regenerative simulation (RS) is a method of stochastic steady-state simulation in which output data are collected and analysed within regenerative cycles (RCs). Since data collected during consecutive RCs are independent and identically distributed, there is no problem with the initial transient period in simulated processes, which is a perennial issue of concern in all other types of steady-state simulation. In this paper, we address the issue of experimental analysis of the quality of sequential regenerative simulation in the sense of the coverage of the final confidence intervals of mean values. The ultimate purpose of this study is to determine the best version of RS to be implemented in Akaroa2 [1], a fully automated controller of distributed stochastic simulation in LAN environments.

  • PDF