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A Study on the Sequential Regenerative Simulation

JongSuk R. Lee’, HaeDuck J. Jeong”

Abstract

Regenerative simulation (RS) is a method of stochastic steady-state simulation in
which output data are collected and analysed within regenerative cycles (RCs). Since
data collected during consecutive RCs are independent and identically distributed,
there is no problem with the initial transient period in simulated processes, which is
a perennial issue of concern in all other types of steady-state simulation. In this
paper, we address the issue of experimental analysis of the quality of sequential
regenerative simulation in the sense of the coverage of the final confidence intervals
of mean values. The ultimate purpose of this study is to determine the best version
of RS to be implemented in Akaroa2 [1], a fully automated controller of distributed
stochastic simulation in LAN environments.
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1. Introduction

Sequential statistical analysis of output
data in stochastic simulation, used for
controlling the length of simulation, is
regarded as the only practical way of
securing appropriate level of credibility of
the final simulation results [2]. Following
this approach, simulation is progressing
from one checkpoint to the next one, until a
pre-specified accuracy of all  point
estimators is obtained. Probably the most
commonly used stopping criterion for
sequential steady-state simulation is the
relative precision, defined as the ratio of the
half-width of the confidence interval (at a
given confidence level) and the current
estimate of a given estimated performance
measure [3]. An experiment is stopped at
the checkpoint at which the required
relative precision of the final results is
reached.

methods of
steady-state simulation output data analysis,
like Spectral Analysis and Batch Means,
one has to discard data collected during the
initial transient periods and observe the
process over sufficiently long time period
later on, to obtain satisfactorily credible
estimates. Determination of the length of
the initial transient period is often
non-trivial and likely to require
sophisticated  statistical techniques  [3].
Therefore, regenerative method of analysis
of simulation output data is very attractive
alternative, because it avoids this problem.
In regenerative stochastic processes,
regenerative cycles (RCs) produce batches
of independent and identically distributed

In non-regenerative

data, and the final precision of results
depends on the number of RCs observed.

Standard sequential stopping rules of
sequential simulation [3], like the relative
precision can be used also in conjunction
with RS (regenerative simulation). However,

sequential steady-state RS can lead to
inaccurate  results if the  simulation
experiment stops too early, when the

sequential stopping criterion is accidently
temporarily met. Some sequential stopping
rules for RS were proposed and tested by
Sauer [4] and Lavenberg and Sauer [5].
Following the stopping rule proposed in [5],
the simulation should be stopped when the
minimum number of RCs is observed
(assumed to be 10) and the required
precision is reached. In [4], it was argued
that the simulation run length should be
associated with some minimum simulation
time. As the results of our studies show,
such approaches are not longer satisfactory
or needed, taking into account currently
available computing resources.

One of the main quality criteria used for
assessing the quality of methods of
simulation output data analysis in stochastic
simulation is the coverage of the final
confidence intervals they produce, defined as
the proportion of the final confidence
intervals which contain the true value of
the analysed performance measure. Such
experimental confidence level should be
confronted with the theoretical confidence
level of the final estimates. Any good
method of analysis of simulation output data
should produce narrow and  stable
confidence intervals, and the relative
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frequency of such an interval containing the
true value of the estimated performance
measure should not differ from the assumed
theoretical confidence level.

In the past, coverage analyses of various
sequential stopping rules for RS, including
those in [4] and [5], were conducted using
fixed numbers of replications (for example,
50 and 100, as [4] and [5], respectively).
But, as recently argued in [6], coverage
analysis should be conducted sequentially, to
secure statistically accurate results. The
rules of sequential coverage analysis for
non-RS have been proposed in [6]. In this
report, an adaptation of these rules for
sequential RS is presented in Section 4.
This is an enhanced version of the
coverage analysis, based on F distribution,
which, as shown in [7], leads to more
efficient interval estimators of proportions.
The numerical results of coverage analysis
of the sequential RS applied for estimating
steady-state means, and reported in Section
4, were obtained in our quest for the most
robust method of sequential analysis of
simulation output data, to be implemented in
Akaroa2 [1], a fully automated controller of
distributed stochastic simulation on multiple
networked Drocessors, in Multiple
Replications In Parallel (MRIP) scenario [8].
The results of coverage analysis of two
other methods of sequential estimation of
steady-state means, namely based on
Non-overlapping Batch Means and Spectral
Analysis (in its version originally proposed
by Heidelberger and Welch [9)) were
presented in [6]. The results of coverage
analysis of sequential methods of estimation
of steady-state quantiles are reported in

[10] and [11].

Analysis of coverage is of course limited
to analytically tractable systems, since the
theoretical value of the parameter of interest
has to be known. Because of that, it has
even been claimed that there is no
justification for experimental coverage
analysis, since there is no theoretical basis
for extrapolating results found for simple,
analytically tractable systems to more
complex systems, which are subjects of
practical simulation studies [12]. On the
other hand, no theory of coverage for finite
sample sizes exists, and in this situation,
experimental coverage analysis of
analytically tractable systems remains the
only method available for testing validity of
methods proposed for simulation output
analysis. Certainly nobody is ready to
accept a method of simulation output data
analysis showing very poor quality in
experimental studies of coverage.

2. The Properties of RS

The method of regenerative cycles (RCs,
also known as RS), first suggested by Cox
and Smith [4), to analyse collected
observations of the process {X(#): ¢t > 0 }
has been systematically developed by a
number of authors. The central idea of RCs

18 to exploit the fact that, when
{X(#): t > (0} is a regenerative process,
random  variables between successive

regeneration points are independent and
identically distributed (iid.). Thus it can
circumvent the autocorrelation problem in
estimates.
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RS is based on the assumption that any

regenerative process starts afresh
(probabilistically) at each consecutive
regenerative point. Thus, observations
grouped into batches of random length,
determined by  successive regenerative
instants of the simulated process, are
statistically independent, and that includes

the first RC, if the simulation starts from a
regenerative state.

For instance, when simulating an M/G/1/
ooqueueing system, any instant of time
when this system reaches the state 0 (no
customer present) represents a regenerative
point at the boundary of two consecutive
RCs. After any such instant of time, no
event from the past influences the future
evolution of the system. As a conseguence
of the independent and identically distributed
output data within consecutive RCs, the
problems related with the initial transient
period and correlations between batches of
data vanish [13, 14, 15, 16].

While the accuracy of the final simulation
results from RS depends on the number of
simulated RCs, the rate at which RCs occur
depends on the simulated system. For
example, in heavily loaded but stable
queueing systems regenerative states can
occur very rarely, making the RS very
ineffective, since it becomes difficult, if
possible at all, to form a reliable point
estimate and its confidence interval.

As known, RS uses estimators in the
form of a ratio of two variables; see for
example [13]. To estimate steady-state
mean EX of, for example, waiting times in

a queueing system on the basis of observed
-, of consecutive
pairs of
(asy,y9,
., (a,,v, which are realizations of
independent and identically distributed(i.i.d.)
Yi’ 1 < l < n
where A; and Y; denote, respectively, the

number of customers processed and the
sum of the waiting times in /* RC. Let

waiting times x; X, X3
customers, we collect the

(secondary) output data (a,,y,),

random variables A; and

W), Taln) su(), s%(n), and s3,(n)
be the usual unbiased estimators for FEf ¥},

EIA]! Va?{ m9 Vaf{A]y and COU[ Y, A]
for any i respectively; that is

Wm o= =Xy, am = L e,
Fulw = 15 B =)’
= L (F- (S un)
Fulm) = —1=3a,~a(w)’
= (LA (Farn),

n—1
and

5212(”) = 73_1' g(yi_-}("))(ai_—a("))

= f_—l—( gly ia;—( Z_":lyi* g‘.la ,-)/n).

As a consequence of the strong law of
large numbers [13], the point estimator of
the mean

Hn)= Am)
a(n)
is strongly  consistent  estimator  of

steady-state mean EX that is,
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Hn) - EX a yn — oo. Moreover, the

estimator for variance
sfém) = (S, (m) =21 n) Fu(n)+ 74 n) sSp(n))

is also strongly consistent; that is,

sz(n) — Var(X) as u — oo.

A 100(1- o)% confidence interval for the
steady-state mean obtained by applying RS
is given by

~ S(n)z ) _ 4y
+ R
r(n) anVn ’ 1)
where z,_,5 is the (]—¢@/2) quantile of
the standard normal distribution [13, 14, 15,
16].

3. Sequential Procedures for RS

A steady-state simulation is applied for
investigating the long-run behaviour of a
system. Measures of performmance are then
steady-state parameters, characterising the
steady-—state distributions of output
stochastic processes. There are two general
procedures suggested for constructing a
point estimate for the parameter of interest
and a CI for that point estimate: fixed
sample  size and  sequential for a
steady-state simulation. In fixed sample size
procedures, a single simulation run is made
of a fixed number of pre-specified
observations. Then a point estimate and a
CI are constructed from the available data.
The analyst has no control over the
statistical error in this approach. Obtaining
an acceptable level of statistical error is
simply a matter of luck. Furthermore, no
procedure in which the run-length is fixed
before the simulation begins can be relied
upon to produce a CI that covers the

steady-state parameter with the desired
probability of 1 - 4. Seguential procedures
sequentially determine the length of a
simulation run needed to construct an
acceptable CI for the parameter. With this
approach, the analyst can automatically
control the statistical error by specifying a
stopping criterion.

It is very important that the run-length
of the simulation be properly chosen. If the
simulation is too short, the final simulation
results may be highly variable. On the other

hand, if the simulation is too long,
computing resources may be wasted.
Sequential steady-state simulations should

be run until the CI for the parameter of
interest narrows to a desired width. A
number of sequential run-length control
methods for steady-state simulations has
been proposed. Among these are sequential
procedures involving: NOBM [2], SA [9],
and RCs [5]. All these methods are
developed for controlling the run-length by
running only one simulation.

This section presents in detail sequential
procedures for stopping RS experiment
when the required relative precision of
confidence intervals is achieved. Among the
few possible criteria for stopping RS, we
adapt a stopping criteria which is based on
the relative half-width of the confidence
interval at a given confidence level (1- p),
defined as the ratio

4.(n)
n)’ @)

4 () =(s(mz|_ )/ alm)V n)
and g(n), 0 < &(n) < 1,

e(n)=

where

is the relative
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precision of the confidence interval obtained
on the basis of n RCs.

The simulation experiment is stopped at
the first checkpoint for which
&n) < e ..., where &, is the required
limit relative precision of the results at the

100(1- 9)% confidence level, 0 < €y < 1.

Sequential RS is described in Tables 1

and 2 by a pseudocode procedure that uses
the following parameters:

- (1- @) : The assumed confidence level of
the final results (0 < o < 1)

- Maximum Relative Precision (¢ ,,,) :
The maximum acceptable value of the
relative precision of confidence intervals

0< e <D

Table 1: Sequential Regenerative Simulation

PROCEDURE RegenerativeAnalysis;
PROCEDURE GetNextRC;
— RCSum
— RCLength
— MeanRCLength = (RCLength)/NRCs;
— MeanRCSums = (RCSum)/NRCs:
— SumofSqRCSums = (RCSum*RCSum) ;

END GetNextRC;

PROCEDURE UpdateStatistics;

mechanism is used by the jackknife estimator.

— VarTourSums = 8211(71),;
~ VarTourLengths = S%3(%), ;

— covariance = § 12( n);

— OverallVariance = s%(n);
END UpdateStatistics;

Uses the regenerative method for one ratio estimator

* Get a RC by collecting observations until a regenerative point is detected.
* Collect information of sum and length of a RC.

* Collect the following statistics for estimating variance with RCSum and RCLength of RCs

— SumofSqRCLengths = (RCLength*RCLength) ;
— SumofRCSumbyRCLength = (RCSum#*RCLength) ;

Update the overall variance and the mean using their classical estimators. The sums are updated
dynamically offering a quicker method for determining the overall variance, than the looping

* Update the following statistics using formulae ¢ 11(7’1), & zz(n), and Szlz(n).

* Calculate the overall mean and overall variance using a simple ratio estimator.
— OveralMean = MeanRCSums / MeanRCLength;
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Table 2: Sequential Regenerative Simulation

BEGIN {main procedure} ‘
{initialise parameters for calculating statistics from observations in RC}

NRCs = 1; {Number of RCs collected}
RCSum = 0; {Sum of the observations within a RC}
RCLength = 0; {Length of a single RC}

{Overall mean of RC observations}
{Overall mean of RC lengths}

MeanRCSums = 0.0;
MeanRCLength = 0.0;

{For stimating variance s2(#)}

SumofSqRCSums = 0.0; {Sum of squares of sum of observations in a RC}
SumofSqRCLengths = 0.0 {Sum of squares of RC lengths}

SumofRCSumbyRCLength = 0.0;  {Sum of RC lengths by RC sums}

StopSimulation = false; {a condition of stopping the simulation has not been met yet}

Call GetNextRC;

while (not StopSimulation) {do}
* Call GetNextRC;
* Call UpdateStatistics;

{To ensure the formulae S° n(n), s (), and § 12(7) are not divided by zero,
call UpdateStatistics after minimum 2 RCs collected.}
* Update the value of the relative precision using Equations (1) and (2).
if (relative precision <= Maximum Relative Precision)

StopSimulation = true;
else StopSimulation = false;
enddo;
END RegenerativeAnalysis;

4. Coverage Analysis for Sequential RS

In sequential RS with a stopping rule
based on the relative precision, inaccurate
estimates can be obtained if the stopping
criterion is accidently temporarily satisfied,
having recorded an insufficient number of
RCs. As a consequence of this, sensible
practise is to ensure that estimates do not
come from simulation experiments with too
few RCs. Recognizing the significance of
this factor, we have adjusted stopping rules
for sequential RS by ensuring that

minimum of 30 RCs in a single simulation

of M/M/1/ oo queueing system have to be
observed before it is stopped [17].

This minimum of 30 RCs as the shortest
acceptable length of sequential RS was
found experimentally and can be supported
by such results as those reported in Table
3, obtained during RS of M/M/1/
queueing system. One can see that such
very short simulation runs do have very
poor coverage, below 10%, for the assumed
theoretical coverage of 95%. The elimination
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of too short simulation runs significantly
improves the quality of sequential RS, as
documented by the results of coverage
analysis in Figures 1 and 2. These figures
show the results of sequential coverage
analysis of M/M/1/co queueing system
loaded at 05, with and without the
restriction on the minimum of 30 recorded
RCs as the length of simulation. The
figures also show high initial instability of
coverage. This phenomenon, similar to that
reported in [6], has been the main
motivation behind the proposal of sequential
analysis of coverage. It is clear that the
coverage analysis has to be done over
sufficiently large sample of data (in this
case: after sequential simulation is repeated
sufficiently many times).

Table 3: The number of too short simulation
runs (less than 30 RCs) in 3,000 simulation
replications and their coverage (M/M/1/ oo,
theoretical confidence level = 0.95)

Number of
Load Too Short Runs Coverage
0.1 158 6.3 %
0.2 167 54 %
0.3 159 4.4 %
0.4 156 5.8 %
0.5 166 3.6 %
0.6 159 3.1 %
0.7 191 4.7 %
0.8 281 3.6 %
0.9 450 6.0 %

Ideally, the confidence interval of coverage
method of simulation output
data analysis should cover the confidence
level assumed for the final results [4]. In
practice, this criterion is hardly met by any

for a

method of simulation output data analysis,
so, making this requirement weaker, we
accept the method for practical applications
if the confidence interval of its coverage is
sufficiently close to the confidence level
assumed. However, Figures 1 and 2 show
that the final coverage was far away from
the required level of 0.95.
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Figure 1: Convergence of coverage analysis for
sequential RS with no restricion on the

minimum run length (M/M/1/ oo, load = 0.5)

el 3

L -
&0 AWk 15X a0 =) B trid
Lt

Figure 2: Convergence of coverage analysis for
sequential RS with the minimum length of 30

RCs before stopping (M/M/1/ oo, load = 05)

As argued in [6], this could be caused by
the fact that an insufficient number of bad
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final confidence intervals was recorded. (As
in [6], a bad confidence interval means a
confidence interval that does not cover the
theoretical value of the  estimated
parameter). Following [6], we assumed that
representativeness of data for coverage
analysis requires that minimum 200 bad
confidence intervals have to be recorded
before sequential analysis of coverage can
commence. Typical convergence of coverage
to its final accurate level, if too short
simulation runs are discarded when
minimum number of 200 bad confidence
intervals are recorded, is shown in Figure 3.

Again one can see that the statistical

‘noise’ introduced by too short simulation
runs should be removed before -correct
conclusions regarding the quality of a given
method of simulation output analysis (in this
case: the RS) are drawn. As shown in
Figure 3, this resulted in a jump of
coverage from 0.9 to 0.95. Thus, the results
of coverage of sequential RS reported in
this report were obtained sequentially, until

30 . A e e ———————————————
B3 (Er I T O TR T R TR T R T
Raghcutons

Figure 3: Convergence of coverage analysis for
sequential RS with the minimum length of 30
RCs, and 200 bad confidence intervals

(M/M/1/ o0, load = 05)

at least 200 bad confidence intervals have
been recorded and having results coming
from sequential RS not shorter than 30
RCs. These results will be additionally
confronted with the results obtained
following  previously used method of
coverage analysis, based on the fixed-
sample size approach.

All results for sequential RS were
obtained assuming the required precision
of the final result 5% or less, at the
confidence level of 0.95. The same stopping
criterion applied in our sequential coverage
analysis. Additionally, only simulation runs
of minimum 30 RCs were taken into
account, and the interval estimator of
coverage was based on /£ distribution to
ensure that the sequential analysis of
coverage does not last excessively long [7].

The results of coverage reported in this
section were obtained on the basis of
simulation of M/M/1/ oo queueing systems.
The results of coverage of the sequential
RS obtained from non-sequential analysis
are presented in Figure 4, while Figure 5
show the same results obtained sequentially.
One can clearly see that the sequential
coverage analysis, with filtering off too
short  simulation runs and requiring
recording of at least 200 bad confidence
intervals, produces better (more reliable, as
we have argued) results.

Generally, our results show that the
sequential RS used for analysis of
steady-state means can be considered as a
good candidate for being implemented in
such simulation packages as Akaroa2, where
whole process of simulation output data is
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conducted automatically during simulation.
Before the final recommendation is done,
one should conduct full study of coverage
of this method of simulation output analysis

by including wider spectrum of its
applications, over a range of standard
stochastic systems and processes.
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Figure 4: Non-sequential coverage analysis of
sequential RS (200 replications; M/M/1/ co)
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Figure 5! Sequential coverage analysis of
sequential RS  without and with the
restriction on the minimum run length and
the number of bad confidence intervals

(M/M/1/ o0)

5. Conclusions

Sequential run length control of stochastic
simulation is the only efficient way for
securing precision of the final simulation
results. In non-regenerative methods of
steady-state simulation output data analysis,
like Spectral Analysis and Batch Means,
one has to discard data collected during the
injtial transient periods and observe the
process over sufficiently long time period
later on, to obtain satisfactorily credible
estimates. Determination of the length of
the initial transient period 1is often
non-trivial and likely to require
sophisticated  statistical  techniques [3l.
Therefore, regenerative method of simulation
output data analysis is very attractive
alternative, because it can avoid that
problem. In this paper, we have been
applied the rules of sequential coverage
analysis for methods of output analysis
used in sequential RS used for estimation of
steady-state means.

Our initial results, obtained when using
M/M/1l/ o queueing systems used as the
reference model, indicate the RS in its
sequential version is an attractive solution
for practitioners if special care is taken for
avoiding too short simulation runs. Our
coverage analysis of this RS is continued
by studying its applications over a broader
spectrum of simulation reference models. On
the other hand, additional problems have to
be solved before this method can be offered
in fully automated simulation tools as
Akaroa?2. These include rules for
determination of (approximate) regenerative
points.
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