• 제목/요약/키워드: stochastic cost optimization

검색결과 74건 처리시간 0.027초

Stochastic cost optimization of ground improvement with prefabricated vertical drains and surcharge preloading

  • Kim, Hyeong-Joo;Lee, Kwang-Hyung;Jamin, Jay C.;Mission, Jose Leo C.
    • Geomechanics and Engineering
    • /
    • 제7권5호
    • /
    • pp.525-537
    • /
    • 2014
  • The typical design of ground improvement with prefabricated vertical drains (PVD) and surcharge preloading involves a series of deterministic analyses using averaged or mean soil properties for the various combination of the PVD spacing and surcharge preloading height that would meet the criteria for minimum consolidation time and required degree of consolidation. The optimum design combination is then selected in which the total cost of ground improvement is a minimum. Considering the variability and uncertainties of the soil consolidation parameters, as well as considering the effects of soil disturbance (smear zone) and drain resistance in the analysis, this study presents a stochastic cost optimization of ground improvement with PVD and surcharge preloading. Direct Monte Carlo (MC) simulation and importance sampling (IS) technique is used in the stochastic analysis by limiting the sampled random soil parameters within the range from a minimum to maximum value while considering their statistical distribution. The method has been verified in a case study of PVD improved ground with preloading, in which average results of the stochastic analysis showed a good agreement with field monitoring data.

(s, S) 재고관리 시스템에 대한 확률최적화 기법의 응용 (Application of Stochastic Optimization Method to (s, S) Inventory System)

  • Chimyung Kwon
    • 한국시뮬레이션학회논문지
    • /
    • 제12권2호
    • /
    • pp.1-11
    • /
    • 2003
  • In this paper, we focus an optimal policy focus optimal class of (s, S) inventory control systems. To this end, we use the perturbation analysis and apply a stochastic optimization algorithm to minimize the average cost over a period. We obtain the gradients of objective function with respect to ordering amount S and reorder point s via a combined perturbation method. This method uses the infinitesimal perturbation analysis and the smoothed perturbation analysis alternatively according to occurrences of ordering event changes. Our simulation results indicate that the optimal estimates of s and S obtained from a stochastic optimization algorithm are quite accurate. We consider that this may be due to the estimated gradients of little noise from the regenerative system simulation, and their effect on search procedure when we apply the stochastic optimization algorithm. The directions for future study stemming from this research pertain to extension to the more general inventory system with regard to demand distribution, backlogging policy, lead time, and review period. Another directions involves the efficiency of stochastic optimization algorithm related to searching procedure for an improving point of (s, S).

  • PDF

Large-Scale Phase Retrieval via Stochastic Reweighted Amplitude Flow

  • Xiao, Zhuolei;Zhang, Yerong;Yang, Jie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권11호
    • /
    • pp.4355-4371
    • /
    • 2020
  • Phase retrieval, recovering a signal from phaseless measurements, is generally considered to be an NP-hard problem. This paper adopts an amplitude-based nonconvex optimization cost function to develop a new stochastic gradient algorithm, named stochastic reweighted phase retrieval (SRPR). SRPR is a stochastic gradient iteration algorithm, which runs in two stages: First, we use a truncated sample stochastic variance reduction algorithm to initialize the objective function. The second stage is the gradient refinement stage, which uses continuous updating of the amplitude-based stochastic weighted gradient algorithm to improve the initial estimate. Because of the stochastic method, each iteration of the two stages of SRPR involves only one equation. Therefore, SRPR is simple, scalable, and fast. Compared with the state-of-the-art phase retrieval algorithm, simulation results show that SRPR has a faster convergence speed and fewer magnitude-only measurements required to reconstruct the signal, under the real- or complex- cases.

조립수율을 고려한 공차할당 및 가공중심 결정 (Tolerance allotment with Design Centering considering Assembly Yield)

  • 이진구
    • 한국생산제조학회지
    • /
    • 제9권1호
    • /
    • pp.45-52
    • /
    • 2000
  • The purpose of this research was developing an integrated way to solve two typical tolerance optimization problem i.e. optimal tolerance allotment and design centering. A new problem definition design centering-tolerance allotment problem (DCTA) was proposed here for the first time and solved. Genetic algorithm and coarse Monte Carlo simulation were used to solve the stochastic optimization problem. Optimal costs were compared with the costs from the previous optimization strategies Significant cost reductions were achieved by DCTA scheme.

  • PDF

A Study on the Optimum Structural Design for Oil Tankers Using Multi-Objective Optimization

  • Jang, Chang-Doo;Shin, Sang-Hun
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.245-253
    • /
    • 1998
  • Recently, the importance of multi-objective optimization techniques and stochastic search methods is increasing. The stochastic search methods have the concepts of the survival of the fittest and natural selection such as genetic algorithms(GA), simulated annealing(SA) and evolution strategies (ES). As many accidents of oil tankers cause marine pollution, oil tankers of double hull or mid deck structure are being built to minimize the marine pollution. For the improvement of oil tanker design technique, an efficient optimization technique is proposed in this study. Multi-objective optimization problem of weight and cost of double hull and mid deck tanker is formulated. Discrete design variables are used considering real manufacturing, and the concept of relative production cost is also introduced. The ES method is used as an optimization technique, and the ES algorithm was developed to generate a more efficient Pareto optimal set.

  • PDF

Stochastic Time-Cost Tradeoff Using Genetic Algorithm

  • Lee, Hyung-Guk;Lee, Dong-Eun
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.114-116
    • /
    • 2015
  • This paper presents a Stochastic Time-Cost Tradeoff analysis system (STCT) that identifies optimal construction methods for activities, hence reducing the project completion time and cost simultaneously. It makes use of schedule information obtained from critical path method (CPM), applies alternative construction methods data obtained from estimators to respective activities, computes an optimal set of genetic algorithm (GA) parameters, executes simulation based GA experiments, and identifies near optimal solution(s). A test case verifies the usability of STCT.

  • PDF

Recent Reseach in Simulation Optimization

  • 이영해
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 1994년도 추계학술발표회 및 정기총회
    • /
    • pp.1-2
    • /
    • 1994
  • With the prevalence of computers in modern organizations, simulation is receiving more atention as an effectvie decision -making tool. Simualtion is a computer-based numerical technique which uses mathmatical and logical models to approximate the behaviror of a real-world system. However, iptimization of synamic stochastic systems often defy analytical and algorithmic soluions. Although a simulation approach is often free fo the liminting assumption s of mathematical modeling, cost and time consiceration s make simulation the henayst's last resort. Therefore, whenever possible, analytical and algorithmica solutions are favored over simulation. This paper discussed the issues and procedrues for using simulation as a tool for optimization of stochastic complex systems that are dmodeled by computer simulation . Its emphasis is mostly on issues that are speicific to simulation optimization instead of consentrating on the general optimizationand mathematical programming techniques . A simulation optimization problem is an optimization problem where the objective function. constraints, or both are response that can only be evauated by computer simulation. As such, these functions are only implicit functions of decision parameters of the system, and often stochastic in nature as well. Most of optimization techniqes can be classified as single or multiple-resoneses techniques . The optimization of single response functins has been researched extensively and consists of many techniques. In the single response category, these strategies are gradient based search techniques, stochastic approximate techniques, response surface techniques, and heuristic search techniques. In the multiple response categroy, there are basically five distinct strategies for treating the responses and finding the optimum solution. These strategies are graphica techniqes, direct search techniques, constrained optimization techniques, unconstrained optimization techniques, and goal programming techniques. The choice of theprocedreu to employ in simulation optimization depends on the analyst and the problem to be solved. For many practival and industrial optimization problems where some or all of the system components are stochastic, the objective functions cannot be represented analytically. Therefore, modeling by computersimulation is one of the most effective means of studying such complex systems. In this paper, after discussion of simulation optmization techniques, the applications of above techniques will be presented in the modeling process of many flexible manufacturing systems.

  • PDF

SDS 알고리즘을 이용한 비선형 파라미터 최적화에 관한 연구 (A Study on Nonlinear Parameter Optimization Problem using SDS Algorithm)

  • 이영진;장용훈;이권순
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.623-625
    • /
    • 1998
  • This paper focuses on the fast convergence in nonlinear parameter optimization which is necessary for the fitting of nonlinear models to data. The simulated annealing(SA) and genetic algorithm(GA), which are widely used for combinatorial optimization problems, are stochastic strategy for search of the ground state and a powerful tool for optimization. However, their main disadvantage is the long convergence time by unnecessary extra works. It is also recognised that gradient-based nonlinear programing techniques would typically fail to find global minimum. Therefore, this paper develops a modified SA which is the SDS(Stochastic deterministic stochastic) algorithm can minimize cost function of optimal problem.

  • PDF

Charging Control Strategy of Electric Vehicles Based on Particle Swarm Optimization

  • Boo, Chang-Jin
    • 전기전자학회논문지
    • /
    • 제22권2호
    • /
    • pp.455-459
    • /
    • 2018
  • In this paper, proposed a multi-channel charging control strategy for electric vehicle. This control strategy can adjust the charging power according to the calculated state-of-charge (SOC). Electric vehicle (EV) charging system using Particle Swarm Optimization (PSO) algorithm is proposed. A stochastic optimization algorithm technique such as PSO in the time-of-use (TOU) price used for the energy cost minimization. Simulation results show that the energy cost can be reduced using proposed method.

A STOCHASTIC VARIANCE REDUCTION METHOD FOR PCA BY AN EXACT PENALTY APPROACH

  • Jung, Yoon Mo;Lee, Jae Hwa;Yun, Sangwoon
    • 대한수학회보
    • /
    • 제55권4호
    • /
    • pp.1303-1315
    • /
    • 2018
  • For principal component analysis (PCA) to efficiently analyze large scale matrices, it is crucial to find a few singular vectors in cheaper computational cost and under lower memory requirement. To compute those in a fast and robust way, we propose a new stochastic method. Especially, we adopt the stochastic variance reduced gradient (SVRG) method [11] to avoid asymptotically slow convergence in stochastic gradient descent methods. For that purpose, we reformulate the PCA problem as a unconstrained optimization problem using a quadratic penalty. In general, increasing the penalty parameter to infinity is needed for the equivalence of the two problems. However, in this case, exact penalization is guaranteed by applying the analysis in [24]. We establish the convergence rate of the proposed method to a stationary point and numerical experiments illustrate the validity and efficiency of the proposed method.