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Abstract 
 

Phase retrieval, recovering a signal from phaseless measurements, is generally considered to 
be an NP-hard problem. This paper adopts an amplitude-based nonconvex optimization cost 
function to develop a new stochastic gradient algorithm, named stochastic reweighted phase 
retrieval (SRPR). SRPR is a stochastic gradient iteration algorithm, which runs in two stages: 
First, we use a truncated sample stochastic variance reduction algorithm to initialize the 
objective function. The second stage is the gradient refinement stage, which uses continuous 
updating of the amplitude-based stochastic weighted gradient algorithm to improve the initial 
estimate. Because of the stochastic method, each iteration of the two stages of SRPR involves 
only one equation. Therefore, SRPR is simple, scalable, and fast. Compared with the state-of-
the-art phase retrieval algorithm, simulation results show that SRPR has a faster convergence 
speed and fewer magnitude-only measurements required to reconstruct the signal, under the 
real- or complex- cases. 
 
Keywords: Phase retrieval, Nonconvex optimization, sample stochastic variance reduction, 
stochastic reweighted gradient iteration 
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1.  Introduction 

Phase retrieval, recovering a signal from given intensity or magnitude only measurements, is 
reflected in various fields of science and engineering, such as astronomy [1], electron 
microscopy [2], optics [3], and X-ray crystallography [4]. Generally, in optical imaging, due 
to optical detectors' physical limitations [5], optical detection equipment such as 
photosensitive film, charge-coupled device (CCD) camera, or human eye can only record the 
intensity but not the phase of a light wave. However, for an image, the structural information 
carried by its phase is far greater than that taken by its intensity. Hence it is challenging to 
reconstruct the signal from the intensity- or magnitude-only measurements are of great 
significance. 

Mathematically speaking, Phase Retrieval is the problem of recovering 𝑁𝑁-dimensional 
real or complex signal 𝒙𝒙 from 𝑀𝑀 linear transformation (or Fourier transform) measurements 

 
𝑦𝑦𝑖𝑖 = |⟨𝒂𝒂𝑖𝑖 ,𝒙𝒙⟩|2,  1 ≤ 𝑖𝑖 ≤ 𝑚𝑚                                                  (1) 

 

where the given measurements vector 𝒚𝒚 ∶= [𝑦𝑦1 ⋯𝑦𝑦𝑚𝑚]𝑇𝑇 and the sensing/feature vector 𝒂𝒂𝒊𝒊 ∈
ℝ𝑛𝑛 or ℂ𝑛𝑛 are known, and the signal vector 𝒙𝒙 ∈ ℝ𝑛𝑛 or ℂ𝑛𝑛 is the wanted unknown vector. 
It is worth noting that 𝑦𝑦𝑖𝑖 denotes the intensity or the squared modulus, whereas 𝜓𝜓𝑖𝑖 ∶= �𝑦𝑦𝑖𝑖 
denotes the magnitude vector or the amplitude vector. Phrased differently, we want to uniquely 
recover 𝒙𝒙 (up to the global sign) from the system of quadratic equations (1), or retrieve the 
sign or phase of {⟨𝒂𝒂𝑖𝑖,𝒙𝒙⟩}𝑖𝑖=1𝑚𝑚  under the setting of real or complex values. Due to the loss of 
sign or phase information, to recover 𝒙𝒙 exactly, the number of measurements 𝑚𝑚 and the 
dimension 𝑛𝑛  of the wanted original signal should satisfy m ≥ 2n − 1  or 𝑚𝑚 ≥ 4𝑛𝑛 − 4 
when 𝒂𝒂𝑖𝑖 , 𝒙𝒙  ∈ ℝ𝑛𝑛  or ℂ𝑛𝑛 , respectively, while 𝑚𝑚 = 2𝑛𝑛 − 1  is also necessary [6], [7]. 
Nevertheless, the quadratic equations in (1) is still an NP-hard problem, and its solution is 
always challenging.  

 

1.1 Related Works 
The measurements are generally corrupted with noise. When these additional noises 

follow the Gaussian distribution, we consider using the least-squares method (which is 
consistent with the maximum likelihood estimate of the original signal), the problem of solving 
systems of quadratic equations in (1)  can be rewritten as the following three different 
empirical loss functions: the intensity-based empirical loss [8], [9]  

 

minimize
𝒛𝒛∈ℝ𝑛𝑛/ℂ𝑛𝑛

1
2𝑚𝑚

�(𝑦𝑦𝑖𝑖 − |⟨𝒂𝒂𝑖𝑖, 𝒛𝒛⟩|2)2
𝑚𝑚

𝑖𝑖=1

,                                              (2) 

 
and its related Poisson likelihood [10] 

 

minimize
𝒛𝒛∈ℝ𝑛𝑛/ℂ𝑛𝑛

1
2𝑚𝑚

�|⟨𝒂𝒂𝒊𝒊, 𝒛𝒛⟩|2
𝑚𝑚

𝑖𝑖=1

− 𝑦𝑦𝑖𝑖 log(|⟨𝒂𝒂𝑖𝑖, 𝒛𝒛⟩|2),                                 (3) 
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and the amplitude-based empirical loss [11] 
 

minimize
𝒛𝒛∈ℝ𝑛𝑛/ℂ𝑛𝑛

1
2𝑚𝑚

�(𝜓𝜓𝑖𝑖 − |⟨𝒂𝒂𝑖𝑖 , 𝒛𝒛⟩|)2
𝑚𝑚

𝑖𝑖=1

                                              (4) 

 
Obviously, due to the quadratic terms in (2) and (3), or the modulus in (4), these 

empirical loss functions are non-convex, so there will be many stationary points when 
minimizing the objective function, so this problem is NP-hard. In the 1-dimensional (1D) 
phase retrieval, there is no uniqueness based on spectral factorization, i.e., even with trivial 
ambiguities (global phase shift, conjugate inversion, and spatial shift) [12], there are multiple 
solutions with the same magnitude. There are several approaches to overcome this ill-posed 
problem. We can add constraints to the signal to be sought, such as sparsity or non-negativity 
[13]–[16]; Another solution is to introduce redundancy for the measurements, including short-
time Fourier transform [17], [18], coded diffraction patterns using random masks and 
structured illuminations [19], or random measurement assumption [10], [11], [20]–[25]. In this 
paper, we will adopt this assumption {𝜓𝜓𝑖𝑖} with random Gaussian {𝒂𝒂𝑖𝑖} designs, which is 
independently and identically distributed (i.i.d.). It’s 𝒂𝒂𝑖𝑖~𝒩𝒩(𝟎𝟎, 𝑰𝑰𝑛𝑛)  for the real-valued 
Gaussian setting, and 𝒂𝒂𝑖𝑖~𝒞𝒞𝒞𝒞(𝟎𝟎, 𝑰𝑰𝑛𝑛) ∶= 𝒩𝒩(𝟎𝟎, 𝑰𝑰𝑛𝑛 2⁄ ) + 𝑗𝑗𝑗𝑗(𝟎𝟎, 𝑰𝑰𝑛𝑛 2⁄ )  for the complex-
valued one. 

There are two ways to solve such problems: convex and nonconvex ones. Based on the 
so-called matrix-lifting technique, the convex ones express solving semidefinite programming 
(SDP), such as PhaseLift [22], PhaseCut [26], and CoRk [27]. Other convex approaches rely 
on convex relaxation to reformulate the problem as sparse recovery, solving a basis pursuit 
problem in the dual domain, such as PhaseMax [28], SPARTA [29]. On the other hand, the 
nonconvex approaches include alternating projection (e.g. Gerchberg-Saxton, Fineup method) 
[30], [31], AltMinPhase [21], Wirtinger Flow and its variants (WF/TWF/RWF) [10], [20], [32], 
trust-region [33], proximal linear algorithms [33], [34], (stochastic) truncated amplitude flow 
variants (TAF/RAF/STAF) [11], [23]–[25]. These non-convex methods run directly on vector-
optimized variables, so they have significant computational advantages over convex methods 
based on matrix lifting techniques.  

However, although non-convex optimization can obtain the best statistical guarantee in 
no-noise or noisy environment, even if random Gaussian design is introduced, non-convex 
optimization will still have several shortcomings: First, there will be a lot of stationary points 
in the non-convex optimization process, which will bring a lot of trouble to our calculation 
process, so that the optimization often falls into the local optimal, Our task is to develop an 
algorithm that approximates the global optimal based on existing algorithms; More 
troublesome is the existence of saddle points, which often makes optimization dead, how to 
get rid of saddle points is also one of the primary purposes of this paper; It is well known that 
there is an information theory limit 𝑚𝑚 = 2𝑛𝑛 − 1 or 4𝑛𝑛 − 4, hence it will be very challenging 
to develop a practical algorithm that can achieve perfect recovery and optimal statistical 
accuracy recovery when the number of measurements is close to the limit of information 
theory; Finally, the current application and data scale are getting larger and larger, the existing 
incremental gradient method [35] and stochastic gradient method [23], [36] can no longer meet 
the requirements of accurate recovery and convergence speed, it is also challenging to increase 
the convergence speed and reduce the computational complexity of the algorithm in large-
scale applications. 
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1.2 Our Contribution 
Inspired by TAF, this paper uses a nonconvex optimization formulation based on 

amplitude to develop a new stochastic gradient algorithm, referred to stochastic reweighted 
phase retrieval (SRPR). SRPR is an iterative algorithm based on and extends TAF [11] to be 
applied to large-scale phase retrieval applications such as imaging. There are two stages of the 
proposed algorithm: The first stage is the initialization stage, which adopts a sample stochastic 
variance reduction algorithm to initialize the objective function. Like TAF, we use the 
orthogonal promotion to determine the truncated threshold. In the gradient refinement stage, 
we use the weighted gradient method to update the estimated initial value, and the stochastic 
gradient method is used to accelerate the process. 

Even in a high-dimensional environment, SRPR can perfectly reconstruct any signal 
given a minimum number of equations (𝑚𝑚 = 2𝑛𝑛 − 1) without any additional assumptions. 
This paper aims to use a stochastic variance reduction gradient (SVRG) variant algorithm to 
estimate the initialization stage's initial value. Compared with the classic SVRG algorithm [23] 
and power method using truncated procedure [11], the new algorithm retains a gradient 
snapshot at each iteration to replace the full gradient. It can significantly reduce the calculation 
time. In the gradient refinement phase, we use the stochastic gradient method to update the 
estimated initial value, and the truncated rule is used to eliminate the wrong estimate. By 
calculating these two stages, even under the condition of approaching the limit of information 
theory, SRPR can still accurately recover the signal. At the same time, in such relatively large-
scale dimensions as image applications, SRPR is superior to existing algorithms in terms of 
accurate recovery performance and convergence speed, such as (T) AF [11], ITWF [37], 
(T)WF [8], [10], RAF [24], [25] and STAF [23]. 

The rest of this article is organized as follows. Section 2 describes and analyzes the 
amplitude-based loss function, describes the two stages of the SRPR algorithm in detail. 
Furthermore, simulated tests comparing the SRPR algorithm with (T)WF [8], [10], TAF [11], 
RAF [24], [25], STAF [23] are presented in Section 3. 

Notation: Lower-(upper-) case boldface letters denote vectors (matrices). The symbol 
𝒯𝒯 (ℋ) denotes transposition (conjugate transposition). The symbol ⌈∙⌉ stands for the largest 
integer no more significant than the given number. If 𝒙𝒙 ∈ ℝ𝒏𝒏 is the true solution of (1), then 
−𝒙𝒙 is also. We define Euclidean distance of any estimate 𝒛𝒛 ∈ ℝ𝒏𝒏 to the true solution set 
{±𝒙𝒙} of (1) as dist(𝒛𝒛,𝒙𝒙 ) ∶= min‖𝒛𝒛 ± 𝒙𝒙‖. 

2. Stochastic Reweighted Phase Retrieval 

SRPR is based on TAF [11], and the stochastic gradient descent method is used in the 
initialization and gradient refinement stages. Therefore, we will detail SRPR from two stages.  

For concreteness, we mainly discuss real-valued Gaussian models with a real signal 𝒙𝒙 ∈
ℝ𝒏𝒏 and i.i.d. Gaussian random designs 𝒂𝒂𝑖𝑖~𝒩𝒩(𝟎𝟎, 𝑰𝑰), 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚. Nevertheless, SRPR still 
applies to complex-valued Gaussian models with a complex vector 𝒙𝒙 ∈ ℂ𝒏𝒏 and i.i.d. design 
vectors 𝒂𝒂𝑖𝑖~𝒞𝒞𝒞𝒞(𝟎𝟎, 𝑰𝑰𝑛𝑛) ∶= 𝒩𝒩(𝟎𝟎, 𝑰𝑰𝑛𝑛 2⁄ ) + 𝑗𝑗𝑗𝑗(𝟎𝟎, 𝑰𝑰𝑛𝑛 2⁄ ). In this paper, using the least-squares 
criterion, we can convert solving the phaseless quadratic equation in (1) to minimize the 
amplitude-based empirical loss function  

minimize
𝒛𝒛∈ℝ𝑛𝑛

ℓ(𝒛𝒛) ∶=
1

2𝑚𝑚
�(𝜓𝜓𝑖𝑖 − |⟨𝒂𝒂𝑖𝑖 , 𝒛𝒛⟩|)2
𝑚𝑚

𝑖𝑖=1

                                   (5) 
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2.1 Sample Stochastic Variance Reducing Initialization 
In this section, we will elaborate on the initialization stage. Since (5) is non-convex and 

non-smooth, it makes sense to obtain a good initialization. We developed a new initialization 
method based on the orthogonality-promoting initialization (OPI) method in TAF. Specifically, 
since any vectors are approximately orthogonal in pairs in high-dimensional space [11], we 
adopt 

cos2 𝜃𝜃𝑖𝑖 ∶=
|⟨𝒂𝒂𝑖𝑖,𝒙𝒙⟩|2

‖𝒂𝒂𝑖𝑖‖2‖𝒙𝒙‖2
=

𝜓𝜓𝑖𝑖2

‖𝒂𝒂𝑖𝑖‖2‖𝒙𝒙‖2
,  1 ≤ 𝑖𝑖 ≤ 𝑚𝑚                                (6) 

 
to represent the geometric relationship between 𝒂𝒂𝑖𝑖  and 𝒙𝒙, where 𝜃𝜃𝑖𝑖  represents the angle 
between 𝒂𝒂𝑖𝑖  and 𝒙𝒙 , The larger 𝜃𝜃𝑖𝑖 , the smaller cos2 𝜃𝜃𝑖𝑖 , indicating the more orthogonal 
between 𝒂𝒂𝑖𝑖  and 𝒙𝒙 . Based on this feature, we can approximate 𝒙𝒙  by finding the most 
orthogonal vector 𝒛𝒛 to {𝒂𝒂𝑖𝑖}𝑖𝑖∈ℐ0, where the index set ℐ0 includes indexes of 𝒂𝒂𝑖𝑖 that make 
cos2 𝜃𝜃𝑖𝑖 the smallest. 

Without loss of generality, assuming ‖𝒙𝒙‖ = 1, we find the estimated vector 𝒛𝒛�0 through  
 

𝒛𝒛�0 ≔ arg 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝒛𝒛𝒯𝒯𝒀𝒀𝒀𝒀
‖𝒛𝒛‖=1

∶= 𝒛𝒛𝒯𝒯 �
1

|ℐ0|�
𝒂𝒂𝑖𝑖𝒂𝒂𝑖𝑖𝒯𝒯

‖𝒂𝒂𝑖𝑖‖2𝑖𝑖∈ℐ0

�𝒛𝒛                              (7) 

 

where 𝒀𝒀 ∶= 1
|ℐ0|

∑ 𝒂𝒂𝒊𝒊𝒂𝒂𝒊𝒊
𝒯𝒯

‖𝒂𝒂𝒊𝒊‖2𝑖𝑖∈ℐ0 , |ℐ0| is on the order of n. On the other hand, when ‖𝒙𝒙‖ ≠ 1, we 

can scale 𝒛𝒛�0 by the norm estimation of 𝒙𝒙 to obtain the current estimate 𝒛𝒛0 ≔ �1
𝑚𝑚
∑ 𝑦𝑦𝑖𝑖𝑚𝑚
𝑖𝑖=1 𝒛𝒛�0 

[11]. 
Solving (7)  is equivalent to solving the eigenvector corresponding to the smallest 

eigenvalue of Y , which requires eigendecomposition or matrix inversion, and the 
computational complexity is 𝒪𝒪(𝑛𝑛3). Define ℐ0 as the complement of ℐ0 in [m]. In order to 
reduce the computational complexity, according to SLLN, for the i.i.d. standard Gaussian 
random matrix {𝒂𝒂𝑖𝑖~𝒩𝒩(0, 𝐼𝐼𝑛𝑛)}𝑖𝑖=1𝑚𝑚 , there are 

 
1
𝑚𝑚
�

𝒂𝒂𝑖𝑖𝒂𝒂𝑖𝑖𝒯𝒯

‖𝒂𝒂𝑖𝑖‖2

𝑚𝑚

𝑖𝑖=1

≈ 𝔼𝔼 �
𝒂𝒂𝑖𝑖𝒂𝒂𝑖𝑖𝒯𝒯

‖𝒂𝒂𝑖𝑖‖2
� =

1
𝑛𝑛
𝐼𝐼𝑛𝑛,                                                  (8) 

 
where 𝔼𝔼[∙] expresses expectations. Thus 
 

�
𝒂𝒂𝑖𝑖𝒂𝒂𝑖𝑖𝒯𝒯

‖𝒂𝒂𝑖𝑖‖2𝑖𝑖∈ℐ0

= �
𝒂𝒂𝑖𝑖𝒂𝒂𝑖𝑖𝒯𝒯

‖𝒂𝒂𝑖𝑖‖2𝑖𝑖∈[𝑚𝑚]

−�
𝒂𝒂𝑖𝑖𝒂𝒂𝑖𝑖𝒯𝒯

‖𝒂𝒂𝑖𝑖‖2
𝑖𝑖∈ℐ0

≅
𝑚𝑚
n
𝐼𝐼𝑛𝑛 −�

𝒂𝒂𝑖𝑖𝒂𝒂𝑖𝑖𝒯𝒯

‖𝒂𝒂𝑖𝑖‖2
𝑖𝑖∈ℐ0

.                     (9) 

 
Defining 𝑩𝑩 = [𝒂𝒂𝑖𝑖 ‖𝒂𝒂𝑖𝑖‖⁄ ]𝑖𝑖∈ℐ0, the eigenvector corresponding to the minimum eigenvalue of 
solving 𝒀𝒀 in (7) can be reduced to the eigenvector corresponding to the largest eigenvalue 
of solving 𝒀𝒀 = 𝑩𝑩𝑩𝑩𝒯𝒯, i.e. 
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𝒛𝒛�0 ≔ arg max
‖𝒛𝒛‖=1

𝒛𝒛𝒯𝒯𝒀𝒀𝒛𝒛 ∶= 𝒛𝒛𝒯𝒯 �
1
�ℐ0�

�
𝒂𝒂𝑖𝑖𝒂𝒂𝑖𝑖𝒯𝒯

‖𝒂𝒂𝑖𝑖‖2
i∈ℐ0

�𝒛𝒛, (10) 

 
which is a typical principal component analysis (PCA) problem. On the one hand, 
WF/TWF/TAF [8], [10], [11] uses the power method to solve this problem. The computational 
complexity required by the power method to obtain 𝜖𝜖-accurate solutions is 𝒪𝒪 �1

δ
n�ℐ0� log(1/

𝜖𝜖)�, where the eigengap δ > 0 is defined as the difference between the largest and second-
largest eigenvalues [40]. However, the power method is not suitable for relatively large 
dimensional data such as image applications, especially applications with small eigengaps. On 
the other hand, some stochastic algorithms are used to solve (10). STAF uses variance-
reducing orthogonality-promoting initialization (VR-OPI) algorithm [11], which is a 
stochastic variance reduction algorithm (SVRG) [38]. It consists of a series of epochs, which 
contains a large number of iterative updates. VR-OPI scans the entire dataset every time the 
epoch starts and calculates a snapshot of the full gradient. And for each iteration in one epoch, 
the algorithm randomly selects an instance from �ℐ0� to calculate the gradient, and combines 
the gradient of the outer loop epochs and the inner loop iterations to reduce the variance of the 
random gradient and achieve effective convergence [39]. However, if there are too many 
instances of the data set and the data dimension is very large, since the calculation of the full 
gradient in each epoch requires the scan the entire dataset, the snapshot of the full gradient 
results in a large number of gradient calculations, which is very time-consuming. If full-
gradient snapshots can be avoided in each epoch, VR-OPI [11] can be significantly accelerated, 
which will bring better convergence performance. 

This paper uses a new acceleration algorithm sampleVR [40] to solve the orthogonal 
acceleration initialization problem in (10), we named it sample stochastic variance reducing 
orthogonality-promoting initialization (SSVR-OPI), summarized in Algorithm 1. Specifically, 
SSVR-OPI iteratively updates two sets of loops. Each execution of the inner loop is called an 
iteration, and each execution of the outer loop is called an epoch. SSVR-OPI has a total of S 
epochs, and each epoch contains T iterations. The core of the algorithm is to estimate the 

snapshot of the full gradient 1
�ℐ0�

∑ 𝒂𝒂𝑖𝑖𝑗𝑗𝒂𝒂𝑖𝑖𝑗𝑗
𝒯𝒯𝝎𝝎�𝑠𝑠+1

�ℐ0�
𝑗𝑗=1  through the stochastic gradient g =

1
𝑘𝑘
∑ 𝒂𝒂𝑖𝑖𝑗𝑗𝒂𝒂𝑖𝑖𝑗𝑗

𝒯𝒯𝝎𝝎�𝑠𝑠+1𝑘𝑘
𝑗𝑗=1  in step 7, which replaces the snapshot of the full gradient in each epoch in 

the VR-OPI [11] algorithm, thereby reducing the computational complexity. The stochastic 
gradient g is obtained by calculating k (k<<|ℐ0̅|) sample instances from the inner loop, 
representing the average value of the stochastic gradient of k instances, and uses it as the 
progressive direction of the next outer loop used in Step 4. 

We can rewrite (10) as 
 

F(𝝎𝝎) = 𝝎𝝎𝒯𝒯𝒀𝒀𝝎𝝎 =
1
�ℐ0�

�𝑓𝑓𝑖𝑖(𝝎𝝎)
i∈ℐ0

,                                                  (11) 

 
where 𝑓𝑓𝑖𝑖(𝝎𝝎) = 𝝎𝝎𝒯𝒯𝒂𝒂𝑖𝑖𝑡𝑡𝒂𝒂𝑖𝑖𝑡𝑡

𝒯𝒯𝝎𝝎  is L -Liptchiz continuous, i.e., for all 𝝎𝝎𝑖𝑖  and 𝝎𝝎𝑗𝑗 , there is 
�𝑓𝑓𝑖𝑖(𝝎𝝎𝑖𝑖) − 𝑓𝑓𝑖𝑖�𝝎𝝎𝑗𝑗�� ≤ 𝐿𝐿�𝝎𝝎𝑖𝑖 − 𝝎𝝎𝑗𝑗�. The following Proposition 1 [39, Theorem2] shows that 
SSVR-OPI causes the optimization goal to converge at a linear rate, up to a constant 
neighborhood of the optimal, proven in [40]. Since SSVR-OPI does not calculate the full 
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gradient in each epoch, but only calculates the average value of the stochastic gradient of k 
instances, it is significantly better than other stochastic algorithms in terms of computational 
complexity. These advantages can be found in the simulation test in Section III. 

Proposition 1 [40]: Let k represents the number of sampled instances for the sth epoch. 
With any μ > 0, when δ = 1+4𝐿𝐿𝐿𝐿|ℐ0̅|𝜂𝜂2

𝜇𝜇|ℐ0̅|𝜂𝜂�1−2𝜂𝜂𝜂𝜂−𝜂𝜂𝜇𝜇�
< 1 holds, F(𝝎𝝎) converges as 

 

𝔼𝔼[𝐹𝐹(𝝎𝝎�𝑠𝑠+1)− 𝐹𝐹(𝝎𝝎�∗)] ≤ δ𝔼𝔼[𝐹𝐹(𝝎𝝎�𝑠𝑠) − 𝐹𝐹(𝝎𝝎�∗)] + 𝒪𝒪 ��
|ℐ0̅| − 𝑘𝑘

|ℐ0̅| �
2

� .              (12) 

 
Although the full gradient estimate g is an unbiased estimate, there will still be a variance 

from the proper full gradient, especially when the estimated value is close to the optimum. We 
can improve this by increasing the number k of sampling instances. An increase in k means 
that there will be an additional computational cost when estimating the full gradient g. In 
contrast, a decrease in k means that the variance between the full gradient and the estimate 
increases. Here we need to effectively balance the value of k  between computational 
consumption and variance. 

Let 

ℊ =
1
𝑘𝑘
�‖∇𝑓𝑓𝑖𝑖(𝝎𝝎�𝑠𝑠+1)‖
𝑘𝑘

𝑗𝑗=1

=
1
𝑘𝑘
��𝒂𝒂𝑖𝑖𝑗𝑗𝒂𝒂𝑖𝑖𝑗𝑗

𝒯𝒯𝝎𝝎�𝑠𝑠+1�
𝑘𝑘

𝑗𝑗=1

,                            (13) 

 

and its expectation is 𝔼𝔼(ℊ) = 1
�ℐ0�

∑ ‖∇𝑓𝑓𝑖𝑖(𝝎𝝎�𝑠𝑠+1)‖�ℐ0�
𝑗𝑗=1 . 𝑓𝑓𝑖𝑖(𝝎𝝎) is L-Lipchitz continuous, that is, 

‖∇𝑓𝑓𝑖𝑖(𝝎𝝎)‖ ≤ 𝐿𝐿. According to Hoeffding’s Inequality, we have 
 

𝛼𝛼 = 𝑃𝑃(|ℊ − 𝔼𝔼(ℊ)| ≥ 𝑡𝑡) ≤ 2e
−2𝑘𝑘2𝑡𝑡2

∑ (𝐿𝐿−0)2𝑘𝑘
𝑖𝑖=1 = 2e

−2𝑘𝑘2𝑡𝑡2
𝑘𝑘𝐿𝐿2 = 2e

−2𝑘𝑘𝑡𝑡2
𝐿𝐿2 ,                 (14) 

 
𝛼𝛼 denotes the significance level, 1 − α is the confidence interval of [−𝑡𝑡, 𝑡𝑡], such k should 
satisfy 

𝑘𝑘 ≤ −𝐿𝐿2
log𝛼𝛼2
2𝑡𝑡2

= −
log𝛼𝛼2

2𝑡𝑡2 𝐿𝐿2⁄ = −
log𝛼𝛼2
𝜖𝜖

,                                     (15) 

 
where 𝜖𝜖 = 2𝑡𝑡2 𝐿𝐿2⁄  is a positive real number. In this way, the value of k will be determined 
by ϵ. With the increase of iterations, the decrease of ϵ causes a continuous increase of k. 
The variance of the estimated value continues to decrease, to achieve the purpose of significant 
convergence. 
 
Algorithm 1: Sample Stochastic Variance Reducing Orthogonality-promoting Initialization. 
1: Input: Data matrix 𝑩𝑩 = {𝒂𝒂𝑖𝑖 ‖𝒂𝒂𝑖𝑖‖⁄ }𝑖𝑖∈ℐ0̅ , truncated thresholds |ℐ0̅| = ⌈𝑚𝑚 6⁄ ⌉, step size 
η = 0.5, α = 0.01, a positive number ϵ, as well as the number of epochs S = 100, and the 
number of iterations T = |ℐ0̅| (by default). 
2:  Initialize the snap of the gradient g = 0, and an initial vector 𝝎𝝎�0 = 0. 
3:  For s = 0 to S − 1 do 
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     𝝎𝝎0 = 𝝎𝝎�𝑠𝑠 
4:  For t = 0 to T − 1 do  
   Pick an instance 𝑖𝑖𝑡𝑡 ∈ ℐ0̅ uniformly at random 

   𝒓𝒓𝑡𝑡 = 𝒂𝒂𝑖𝑖𝑡𝑡𝒂𝒂𝑖𝑖𝑡𝑡
𝒯𝒯𝝎𝝎t − 𝒂𝒂𝑖𝑖𝑡𝑡𝒂𝒂𝑖𝑖𝑡𝑡

𝒯𝒯𝝎𝝎�𝑠𝑠 + 𝒈𝒈 

   𝝎𝝎𝑡𝑡+1 = 𝝎𝝎𝑡𝑡 −  𝜂𝜂𝒓𝒓𝑡𝑡 
   𝝎𝝎𝑡𝑡+1 = 𝝎𝝎𝑡𝑡+1 ‖𝝎𝝎𝑡𝑡+1‖⁄  
  End For 
5:  𝝎𝝎�𝑠𝑠+1 = 𝝎𝝎𝑖𝑖, 𝑖𝑖 is a random integer in [0,𝑇𝑇) 

6:  𝑘𝑘 = −
𝑠𝑠 log𝛼𝛼2
𝜖𝜖

 

7:  𝒈𝒈 = 1
𝑘𝑘
∑ 𝒂𝒂𝑖𝑖𝑗𝑗𝒂𝒂𝑖𝑖𝑗𝑗

𝒯𝒯𝝎𝝎�𝑠𝑠+1𝑘𝑘
𝑗𝑗=1  

8: End For 
9: Output: 𝒛𝒛�0 = 𝝎𝝎�𝑠𝑠. 
 
2.2 Stochastic Reweighted Gradient Stage 

 
The amplitude-based empirical loss function 
 

ℓ(𝒛𝒛) =
1

2𝑚𝑚
�ℓ𝑖𝑖(𝒛𝒛)
𝑚𝑚

𝑖𝑖=1

=
1

2m
��𝜓𝜓𝑖𝑖 − �𝒂𝒂𝑖𝑖𝒯𝒯𝒛𝒛��

2
𝑚𝑚

𝑖𝑖=1

                                     (16) 

 
in (5) is a non-convex non-smooth function, and its gradient is 
 

∇ℓ(𝒛𝒛) =
1
𝑚𝑚
�∇ℓ𝑖𝑖(𝒛𝒛)
𝑖𝑖∈𝑚𝑚

=
1
𝑚𝑚
��𝒂𝒂𝑖𝑖𝒯𝒯𝒛𝒛 − 𝜓𝜓𝑖𝑖

𝒂𝒂𝑖𝑖𝒯𝒯𝒛𝒛
�𝒂𝒂𝑖𝑖𝒯𝒯𝒛𝒛�

�𝒂𝒂𝑖𝑖
𝑖𝑖∈𝑚𝑚

.                         (17) 

 

Since 𝒂𝒂𝑖𝑖
𝒯𝒯𝒛𝒛

�𝒂𝒂𝑖𝑖
𝒯𝒯𝒛𝒛�

 introduce a bias in the update direction, such as 𝒂𝒂𝑖𝑖
𝒯𝒯𝒛𝒛𝑡𝑡

�𝒂𝒂𝑖𝑖
𝑇𝑇𝒛𝒛𝑡𝑡�

≠ 𝒂𝒂𝑖𝑖
𝒯𝒯𝒙𝒙

�𝒂𝒂𝑖𝑖
𝒯𝒯𝒙𝒙�

, which may cause 

the Wirtinger derivative to be too large, resulting in a "bad/misleading" search direction. These 
gradients may cause z to move in the opposite direction to x, especially when approaching 
the information theory limit 𝑚𝑚 = 2𝑛𝑛 − 1 or 𝑚𝑚 = 4𝑛𝑛 − 4.  

There are many ways to solve this problem. TAF [11] introduces a truncated rule to detect 
and remove these "bad" gradient components to ensure the right search direction. However, 
this method may cause too many gradient components to be lost or retain defective gradient 
components, thereby affecting the search direction. STAF [41] goes a step further. It refines 
the initial estimation by the stochastic truncated gradient iteration. Each iteration evaluates the 
current generalized gradient and randomly selects from the gradient components or with a 
given probability. This truncated rule is very likely to reject those "bad" gradient component. 
RAF [24], [25] takes a different approach and adopts the (timely) adaptive weighted gradient 
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method by adding different weights 𝜔𝜔𝑖𝑖 to each gradient vector ∇𝑙𝑙𝑖𝑖(𝒛𝒛) of the current point 
𝒛𝒛𝑡𝑡, to find a suitable search direction for the current iteration process, i.e. 

 
𝒛𝒛𝑡𝑡+1 = 𝒛𝒛𝑡𝑡 − 𝜇𝜇∇ℓ(𝒛𝒛) = 𝒛𝒛𝑡𝑡 −

𝜇𝜇
𝑚𝑚
�𝜔𝜔𝑖𝑖∇ℓ𝑖𝑖(𝒛𝒛)
𝑖𝑖∈𝑚𝑚

.                                (18) 

 
The weights 𝜔𝜔𝑖𝑖 corresponding to different gradient components ∇𝑙𝑙𝑖𝑖(𝒛𝒛) are closely related to 
the truncated rule ℒ ≔ �1 ≤ 𝑖𝑖 ≤ 𝑚𝑚: �𝒂𝒂𝑖𝑖

𝒯𝒯𝒛𝒛�
�𝒂𝒂𝒊𝒊
𝒯𝒯𝒙𝒙�

≥ 1
1+𝛾𝛾

� in TAF. Studies in [11] have shown that the 

gradient component corresponding to a large 
�𝒂𝒂𝑖𝑖𝒯𝒯𝒛𝒛�
�𝒂𝒂𝒊𝒊𝒯𝒯𝒙𝒙�

 will have a great probability of pointing in 

the direction of the true value x. If 
�𝒂𝒂𝑖𝑖𝒯𝒯𝒛𝒛�
�𝒂𝒂𝒊𝒊𝒯𝒯𝒙𝒙�

 is regarded as the confidence parameter α of the 

corresponding gradient component, then according to the difference of the confidence 
parameter α, the corresponding gradient components can be distinguished, so as to determine 
the contribution of these gradient components to the overall search direction. 

The method of TAF/STAF is to discard the gradient components corresponding to the 
relatively small α through the truncated rule. RAF adds weights to all gradient components. 
The gradient components with large confidence parameters are added with large weights, and 
small weights are added to those "bad" gradient components. Based on the truncated rule, the 
weight corresponding to the gradient component 𝜔𝜔𝑖𝑖 is 

 

𝜔𝜔𝑖𝑖 ≔
1

1 + 𝛽𝛽𝑖𝑖 ��𝒂𝒂𝒊𝒊∗𝒛𝒛�/�𝒂𝒂𝒊𝒊∗𝒙𝒙��⁄
,  1 ≤ 𝑖𝑖 ≤ 𝑚𝑚                                   (19) 

 
where {𝛽𝛽𝑖𝑖}1≤𝑖𝑖≤𝑚𝑚 are pre-selected parameters. In this way, compared with TAF/STAF, adding 
the weight 𝜔𝜔𝑖𝑖 not only strengthens the importance of good gradient components, but also 
retains the information of weak gradient components. 

In large-scale applications, due to the high data dimension (more samples), the time cost 
of passes over the entire data by the classic gradient descent (GD) method is very high. Hence 
we adopt the stochastic gradient descent (SGD) method with fast convergence speed and low 
calculation complexity to refine the gradient. On the one hand, the number of measurements 
required for phase retrieval to achieve accurate recovery has not reached the information 
theory limit 𝑚𝑚 = 2𝑛𝑛 − 1. TWF needs a ϵ-accurate solution to obtain 𝑚𝑚 ≥ 4.5𝑛𝑛 noise-free 
measurement value, while TAF is about 3𝑛𝑛. In contrast, STAF, which also adopts a stochastic 
algorithm in the gradient stage, only needs about 2.3𝑛𝑛 measurement value. 

On the other hand, as can be seen from [33], the phase retrieval problem is essentially a 
non-convex optimization problem. Therefore, there are many saddle points in its search area, 
and the gradient iteration will most likely fall into the saddle point. SGD method can 
automatically escape from the saddle point and the poor local best and converge globally to a 
local minimum with strong generalization.  

Therefore, to better apply the RAF-based gradient optimization method to large-scale data, 
we introduce the gradient method into the weighted gradient iteration and refine the initial 
estimate 𝒛𝒛0 through this stochastic reweighted gradient iteration method to accelerate the 
gradient iteration stage. Specifically, SRPR uses the following stochastic reweighted gradient 
iteration to update continuously 𝑧𝑧 

𝒛𝒛𝑡𝑡+1 = 𝒛𝒛𝑡𝑡 − 𝜇𝜇𝜔𝜔𝑖𝑖∇ℓ𝑘𝑘𝑡𝑡(𝒛𝒛𝑡𝑡) = 𝒛𝒛𝑡𝑡 − 𝜇𝜇𝜔𝜔𝑖𝑖 �𝒂𝒂𝑘𝑘𝑡𝑡
𝒯𝒯 𝒛𝒛𝑡𝑡 − 𝜓𝜓𝑖𝑖

𝒂𝒂𝑘𝑘𝑡𝑡
𝒯𝒯 𝒛𝒛𝑡𝑡

�𝒂𝒂𝑘𝑘𝑡𝑡
𝒯𝒯 𝒛𝒛𝑡𝑡�

�𝒂𝒂𝑘𝑘𝑡𝑡 ,                 (20) 
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where the step size 𝜇𝜇 is set to a constant. Each iteration of SRPR selects the current gradient 
component function ∇ℓ𝑘𝑘𝑡𝑡(𝒛𝒛𝑡𝑡) by randomly sampling the index 𝑘𝑘𝑡𝑡, where t is the current 
iteration number, and the sampling method of the index 𝑘𝑘𝑡𝑡 can be random sampling from 
{1,2,⋯𝑚𝑚}, or sampling with a given probability. After obtaining the gradient component 
∇ℓ𝑘𝑘𝑡𝑡(𝒛𝒛𝑡𝑡), we use (19) to evaluate the additional weight 𝜔𝜔𝑖𝑖. The proposed SRPR algorithm 
is expressed in Algorithm 2. 

It is worth emphasizing that this stochastic reweighted gradient method is very effective. 
If the randomly selected gradient component is reliable, its additional weight will be higher, 
which will make a more outstanding contribution to the search direction and iterative process. 
Conversely, if it is an unreliable gradient component, its additional weight will be minimal, 
resulting in almost no refinement in the current iteration. Moreover, if the current iteration 
point zt satisfies 𝒂𝒂𝒊𝒊𝒯𝒯𝒛𝒛𝑡𝑡 = 0, that is, there is a nonsmooth item, its weight is set to 𝜔𝜔𝑖𝑖 = 0 to 
eliminate the nonsmooth item and prevent it from affecting the search direction and the 
iteration process. The specific experimental results will be presented in the experimental part 
of Section 3. 
 
Algorithm 2: Stochastic Reweighted Phase Retrieval (SRPR) 
1: Input: Data {(𝒂𝒂𝒊𝒊;𝜓𝜓𝑖𝑖)}1≤𝑖𝑖≤𝑚𝑚 ; step size 𝜇𝜇 = 2  or 6  for real or complex Gaussian 
models; weighting parameters 𝛽𝛽𝑖𝑖 = 10  or 5  for real or complex Gaussian models; the 
maximum number of iterations T. 

2: Initialize 𝒛𝒛𝟎𝟎 ≔ �∑ 𝜓𝜓𝑖𝑖2/𝑚𝑚
𝑖𝑖=1 𝑚𝑚�𝒛𝒛�0 , where 𝒛𝒛�0  is the leading eigenvector of 𝒀𝒀 =

1
�ℐ0�

∑ 𝒂𝒂𝑖𝑖𝒂𝒂𝑖𝑖
𝒯𝒯

‖𝒂𝒂𝑖𝑖‖2i∈ℐ0  obtained via Algorithm 1.  

3: For t = 0 to T − 1 do 
  Choose kt uniformly at random from {1,2,⋯𝑚𝑚} 

4:  𝒛𝒛𝑡𝑡+1 = 𝒛𝒛𝑡𝑡 − 𝜇𝜇𝜔𝜔𝑖𝑖∇ℓ𝑘𝑘𝑡𝑡(𝒛𝒛𝑡𝑡) = 𝒛𝒛𝑡𝑡 − 𝜇𝜇𝜔𝜔𝑖𝑖 �𝒂𝒂𝑘𝑘𝑡𝑡
𝒯𝒯 𝒛𝒛𝑡𝑡 − 𝜓𝜓𝑖𝑖

𝒂𝒂𝑘𝑘𝑡𝑡
𝒯𝒯 𝒛𝒛𝑡𝑡

�𝒂𝒂𝑘𝑘𝑡𝑡
𝒯𝒯 𝒛𝒛𝑡𝑡�

�𝒂𝒂𝑘𝑘𝑡𝑡 

  where 𝑤𝑤𝑖𝑖 ≔
1

1+𝛽𝛽𝑖𝑖 ��𝒂𝒂𝒊𝒊
∗𝒛𝒛�/�𝒂𝒂𝒊𝒊

∗𝒙𝒙��⁄ ,  1 ≤ 𝑖𝑖 ≤ 𝑚𝑚. 

5: End For 
6: Output: 𝒛𝒛𝑇𝑇 

3. Simulation Results 

This section presents the evaluation of the performance of the proposed algorithm SRPR 
relative to TWF [8], [10], TAF [11], RAF [24], [25], and STAF [23]. To be fair, the parameters 
in each algorithm have adopted their suggested values. We use the relative error∶= dist(𝒛𝒛,𝒙𝒙) /
‖𝒙𝒙‖2 as the performance metric of the algorithm, where dist(𝒛𝒛,𝒙𝒙) ∶= min‖𝒛𝒛 ± 𝒙𝒙‖ is the 
Euclidean distance modular constant of the estimation 𝒛𝒛 ∈ ℝ𝒏𝒏 to the true solution {±𝒙𝒙}. All 
simulation tests are performed 100 independent Monte Carlo trials. In each trial, the algorithm 
runs 100 initialization iterations, while the number of gradient refinement iterations are 1000. 
It is worth emphasizing that each iteration of stochastic algorithms such as STAF and SRPR 
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is equivalent to m stochastic iterations over the entire data. A success is declared in a trial 
when the returned estimate attains a relative error less than 10−5.  

The first experimental comparison is in the initialization stage, including the Power 
Method in TAF, the VR-OPI algorithm in STAF, and the SSVR-OPI algorithm proposed in 
this paper. We compare two aspects of exact recovery and convergence speed to observe these 
initialization algorithms' performance in large-scale applications. We use real- or complex-
valued Gaussian models with a data dimension of n =  10000, and all tests are based on 
known theoretical limits of information, i.e., 𝑚𝑚 = 2𝑛𝑛 − 1 in the real case and 𝑚𝑚 = 4𝑛𝑛 − 4 
in the complex case. The first comparison is the error evolution of the iterates used in the 
initialization algorithm; that is, the number of iterations used by each algorithm to obtain its 
exact solution. The error is expressed in logarithmic form, defined as log10 �1 −

�𝑩𝑩𝒯𝒯𝝎𝝎𝑖𝑖�
2 �𝑩𝑩𝒯𝒯𝒖𝒖0�

2� �, where 𝒖𝒖0  is the exact leading eigenvector of 𝒀𝒀 = 𝑩𝑩𝑩𝑩𝒯𝒯  in (10) 
accurately calculated by SVD.  

 

 
Fig. 1. Error evolution of the iterates using different initialization to solve the problem (11): (top) 
Noiseless real-valued Gaussian model with a data dimension of n =  10000 and 𝑚𝑚 = 2𝑛𝑛 − 1; 

(bottom) Noiseless complex-valued Gaussian model with a data dimension of n =  10000 and 𝑚𝑚 =
4𝑛𝑛 − 4. 
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Fig. 1 shows the error evolution capabilities of Power Method, VR-OPI, and SSVR-OPI. 
To be honest, due to the limit of the number of iterations, each iteration of SSVR-OPI only 
estimates the gradient's snapshot, which does not pass the entire data to estimate the entire 
gradient-like VR-OPI. Hence the exact recovery effect of SSVR-OPI is slightly weaker than 
VR-OPI but significantly higher than the power method. On the other hand, because SSVR-
OPI does not require passing through all data for each iteration like VR-OPI, it requires less 
computational complexity or time consumption, about 0.813s per iteration whereas 1.129s in 
VR-OPI under the real case as shown in Table 1. 

 
Table 1. Comparison of time cost between VR-OPI and SSVR-OPI 

Algorithms Real Case Complex Case 

VR-OPI 1.129 6.240 
SSVR-OPI 0.813 3.043 

 
In the second experiment, the algorithms equipped with their own initial method and 

suggested parameter settings were simulated to compare the empirical success rate and the 
convergence speed. We test the experiment separately under noiseless real- and complex- 
Gaussian models. In the real case, the signal is generated as 𝒙𝒙~𝒩𝒩(𝟎𝟎, 𝑰𝑰1000), i.i.d. sampling 
vector is 𝒂𝒂𝑖𝑖~𝒩𝒩(𝟎𝟎, 𝑰𝑰1000), and 𝒙𝒙~𝒞𝒞𝒞𝒞(𝟎𝟎, 𝑰𝑰1000), 𝒂𝒂𝑖𝑖~𝒞𝒞𝒞𝒞(𝟎𝟎, 𝑰𝑰1000) under the complex case. 
Fig. 2 depicts the empirical success rate of all algorithms. For the real case, when m/n = 1.7, 
the success rate of the SRPR exceeds 90%, and guarantees the perfect recovery when m =
1.9n, as shown in Fig. 2. 

 

 
Fig. 2. Empirical success rate with n = 1000. Noiseless real-valued Gaussian model with m/n 

varying by 0.1 from 1 to 5. 
 

Fig. 3 uses 𝑚𝑚 = 2𝑛𝑛 − 1 and 𝑚𝑚 = 4𝑛𝑛 − 4 to compare the convergence speed of each 
algorithm in the real and complex cases, respectively. It is worth mentioning that TWF was 
not added in Fig. 3 (a) because it did not perform well. SRPR can solve the phase retrieval 
problems with fewer iterations compared with other competitive algorithms. 
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Fig. 3. Relative error versus iterations for 𝑛𝑛 = 1000. (top) Noiseless real-valued Gaussian model 

with 𝑚𝑚/𝑛𝑛 = 2. (bottom) Noiseless complex-valued Gaussian model with 𝑚𝑚/𝑛𝑛 = 4. 
 

The last experiment was to test the robustness of SRPR against additive noise destruction. 
We set up a real noisy Gaussian model 𝜓𝜓𝑖𝑖 = |⟨𝒂𝒂𝑖𝑖 ,𝒙𝒙⟩| + 𝜂𝜂𝑖𝑖 with 𝜂𝜂𝑖𝑖~𝒩𝒩(𝟎𝟎,𝜎𝜎2𝑰𝑰), where 𝜎𝜎2 
is set to satisfy the signal-to-noise ratio (SNR)  

 

𝑆𝑆𝑆𝑆𝑆𝑆 ∶= 10 log10� |⟨𝒂𝒂𝑖𝑖 ,𝒙𝒙⟩|2 𝑚𝑚𝜎𝜎2⁄
𝑚𝑚

𝑖𝑖=1

,                                                (21) 

 
which is varied from 10 dB to 50 dB. And the noisy data was generated as 𝜓𝜓𝑖𝑖 = �𝑦𝑦𝑖𝑖. Fig. 
4 show the normalized mean-square error  
 

ΝΜ𝑆𝑆Ε ∶= dist2(𝒛𝒛𝑇𝑇 ,𝒙𝒙) ‖𝒙𝒙‖2⁄                                                 (22) 
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as a function of SNR for different 𝑚𝑚/𝑛𝑛 values. It can be seen from Fig. 4 that the values of 
NMSE with different 𝑚𝑚/𝑛𝑛 are inversely proportional to SNR. From Fig. 4, we can see that 
when the ratio of 𝑚𝑚/𝑛𝑛 is 3 to 6, the curves almost overlap, which proves the stability of SRPR 
under the influence of additive noise. 

 
Fig. 4. The normalized mean-square error as a function of SNR for different 𝑚𝑚/𝑛𝑛 values. 

4. Conclusion 

This paper proposed a stochastic reweighted gradient algorithm to solve large-scale phase 
retrieval problems. The algorithm is divided into two stages. First, a new stochastic variance 
reduction method is used to solve the initialization stage's valuation problem. Then by a new 
stochastic reweighted amplitude-based iterations method, we refined the initial estimated 
value. The simulation test proves that, compared with TAF, TWF, STAF, RAF, the recovery 
success rate and convergence speed of SRPR are improved in both real and complex cases. 
Moreover, approaching the limit of information theory, SRPR can still perfectly recover the 
signal, about 1.9𝑛𝑛 under real Gaussian models. 
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