• 제목/요약/키워드: stochastic control systems

검색결과 239건 처리시간 0.028초

확률적 이선형시스템의 최적제 (Optimal Control of Stochastic Bilinear Systems)

  • Hwang, Chun-Sik
    • 대한전기학회논문지
    • /
    • 제31권7호
    • /
    • pp.18-24
    • /
    • 1982
  • We derived an optimal control of the Stochastic Bilinear Systems. For that we, firstly, formulated stochastic bilinear system and estimated its state when the system state is not directly observable. Optimal control problem of this system is reviewed on the line of three optimization techniques. An optimal control is derived using Hamilton-Jacobi-Bellman equation via dynamic programming method. It consists of combination of linear and quadratic form in the state. This negative feedback control, also, makes the system stable as far as value function is chosen to be a Lyapunov function. Several other properties of this control are discussed.

  • PDF

Stochastic Optimal Control and Network Co-Design for Networked Control Systems

  • Ji, Kun;Kim, Won-Jong
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권5호
    • /
    • pp.515-525
    • /
    • 2007
  • In this paper, we develop a co-design methodology of stochastic optimal controllers and network parameters that optimizes the overall quality of control (QoC) in networked control systems (NCSs). A new dynamic model for NCSs is provided. The relationship between the system stability and performance and the sampling frequency is investigated, and the analysis of co-design of control and network parameters is presented to determine the working range of the sampling frequency in an NCS. This optimal sampling frequency range is derived based on the system dynamics and the network characteristics such as data rate, time-delay upper bound, data-packet size, and device processing time. With the optimal sampling frequency, stochastic optimal controllers are designed to improve the overall QoC in an NCS. This co-design methodology is a useful rule of thumb to choose the network and control parameters for NCS implementation. The feasibility and effectiveness of this co-design methodology is verified experimentally by our NCS test bed, a ball magnetic-levitation (maglev) system.

확률 최적 제어문제에서 발생되는 Elliptic Type H-J-B 방정식의 수치해 (Numerical Solution of an Elliptic Type H-J-B Equation Arising from Stochastic Optimal Control Problem)

  • Wan Sik Choi
    • 제어로봇시스템학회논문지
    • /
    • 제4권6호
    • /
    • pp.703-706
    • /
    • 1998
  • 본 논문에서는 확률 최적 제어문제에서 발생되는 Elliptic type H-J-B(Hamilton-Jacobi-Bellman) 방정식에 대한 수치해를 구하였다. 수치해를 구하기 위하여 Contraction 사상 및 유한차분법을 이용하였으며, 시스템은 It/sub ∧/ 형태의 Stochastic 방정식으로 취하였다. 수치해는 수학적인 테스트 케이스를 설정하여 검증하였으며, 최적제어 Map을 방정식의 해를 구하면서 동시에 구하였다.

  • PDF

The Construct of the Program Control with Probability is Equaled to 1 for the Some Class of Stochastic Systems

  • Chalykh, Elena
    • Journal of Ubiquitous Convergence Technology
    • /
    • 제2권2호
    • /
    • pp.105-110
    • /
    • 2008
  • The definition of the program control is introduced on the theory of the basis of the first integrals SDE system. That definition allows constructing the program control gives opportunity to stochastic system to remain on the given dynamic variety. The program control is considered in terms of dynamically invariant for stochastic process.

  • PDF

Approximate Dynamic Programming-Based Dynamic Portfolio Optimization for Constrained Index Tracking

  • Park, Jooyoung;Yang, Dongsu;Park, Kyungwook
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제13권1호
    • /
    • pp.19-30
    • /
    • 2013
  • Recently, the constrained index tracking problem, in which the task of trading a set of stocks is performed so as to closely follow an index value under some constraints, has often been considered as an important application domain for control theory. Because this problem can be conveniently viewed and formulated as an optimal decision-making problem in a highly uncertain and stochastic environment, approaches based on stochastic optimal control methods are particularly pertinent. Since stochastic optimal control problems cannot be solved exactly except in very simple cases, approximations are required in most practical problems to obtain good suboptimal policies. In this paper, we present a procedure for finding a suboptimal solution to the constrained index tracking problem based on approximate dynamic programming. Illustrative simulation results show that this procedure works well when applied to a set of real financial market data.

확률론적 최적제어와 기계학습을 이용한 동적 트레이딩 전략에 관한 고찰 (Investigations on Dynamic Trading Strategy Utilizing Stochastic Optimal Control and Machine Learning)

  • 박주영;양동수;박경욱
    • 한국지능시스템학회논문지
    • /
    • 제23권4호
    • /
    • pp.348-353
    • /
    • 2013
  • 최근들어, 확률론적 최적제어를 포함한 제어이론과 각종 기계학습 기반 인공지능 방법론은 금융공학 분야의 주요 도구로 자리를 잡아 가고 있다. 본 논문에서는 평균회귀 현상을 보이는 시장을 위한 페어 트레이딩 전략 분야와 추세 추종형 트레이딩 전략 분야에 대해 확률론적 최적제어 이론을 활용한 최신 논문 몇 편을 간단히 살펴보고, 보다 융통성 있고 접근성이 좋은 도구를 확보하기 위하여 확률론적 최적제어이론과 기계학습 기법을 동시에 응용하는 전략을 고려한다. 예시를 위하여 실시한 시뮬레이션은 본 논문에서 고려한 전략이 실제 금융시장 데이터를 대상으로 적용될 때 고무적인 결과를 제공할 수 있음을 보여준다.

Frequency-Domain Balanced Stochastic Truncation for Continuous and Discrete Time Systems

  • Shaker, Hamid Reza
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권2호
    • /
    • pp.180-185
    • /
    • 2008
  • A new method for relative error continuous and discrete time model order reduction is proposed. The reduction technique is based on two recently developed methods, namely frequency domain balanced truncation within a frequency bound and inner-outer factorization techniques. The proposed method is of interest for practical model order reduction because in this context it shows to keep the accuracy of the approximation as high as possible without sacrificing the computational efficiency. Numerical results show the accuracy and efficiency enhancement of the method.

확률적 불확실성을 갖는 선형 연속 시간 시스템의 고유구조 지정제어 (Eigenstructure Assignment Control for Linear Continuous-Time Systems with Probabilistic Uncertainties)

  • 서영봉;최재원
    • 제어로봇시스템학회논문지
    • /
    • 제10권2호
    • /
    • pp.145-152
    • /
    • 2004
  • In this paper, an S(stochastic)-eigenvalue and its corresponding S-eigenvector concept for linear continuous-time systems with probabilistic uncertainties are proposed. The proposed concept is concerned with the perturbation of eigenvalues due to the stochastic variable parameters in the dynamic model of a plant. An S-eigenstructure assignment scheme via the Sylvester equation approach based on the S-eigenvalue/-eigenvector concept is also proposed. The proposed control design scheme based on the proposed concept is applied to a longitudinal dynamics of an open-loop-unstable aircraft with possible uncertainties in aerodynamic and thrust effects as well as separate dynamic pressure effects. These results explicitly characterize how S-eigenvalues in the complex plane may impose stability on the system.

Efficient Computations for Evaluating Extended Stochastic Petri Nets using Algebraic Operations

  • Kim, Dong-Sung;Moon, Hong-Ju;Bahk, Je-Hyeong;Kwon, Wook-Hyun;Zygmunt J. Haas
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권4호
    • /
    • pp.431-443
    • /
    • 2003
  • This paper presents an efficient method to evaluate the performance of an extended stochastic Petri net by simple algebraic operations. The reachability graph is derived from an extended stochastic Petri net, and then converted to a timed stochastic state machine, using a semi-Markov process. The n-th moments of the performance index are derived by algebraic manipulations with each of the n-th moments of transition time and transition probability. For the derivation, three reduction rules are introduced on the transition trajectories in a well-formed regular expression. Efficient computation algorithms are provided to automate the suggested method. The presented method provides a proficient means to derive both the numerical and the symbolic solutions for the performance of an extended stochastic Petri net by simple algebraic manipulations.

ADAPTIVE CONTROL USING NEURAL NETWORK FOR MINIMUM-PHASE STOCHASTIC NONLINEAR SYSTEM

  • Seok, Jinwuk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.18-18
    • /
    • 2000
  • In this paper, some geometric condition for a stochastic nonlinear system and an adaptive control method for minimum-phase stochastic nonlinear system using neural network are provided. The state feedback linearization is widely used technique for excluding nonlinear terms in nonlinear system. However, in the stochastic environment, even if the minimum phase linear system derived by the feedback linearization is not sufficient to be controlled robustly. the viewpoint of that, it is necessary to make an additional condition for observation of nonlinear stochastic system, called perfect filtering condition. In addition, on the above stochastic nonlinear observation condition, I propose an adaptive control law using neural network. Computer simulation shows that the stochastic nonlinear system satisfying perfect filtering condition is controllable and the proposed neural adaptive controller is more efficient than the conventional adaptive controller

  • PDF