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Frequency-Domain Balanced Stochastic Truncation for
Continuous and Discrete Time Systems

Hamid Reza Shaker

Abstract: A new method for relative error continuous and discrete time model order reduction is
proposed. The reduction technique is based on two recently developed methods, namely
frequency domain balanced truncation within a frequency bound and inner-outer factorization
techniques. The proposed method is of interest for practical model order reduction because in this
context it shows to keep the accuracy of the approximation as high as possible without sacrificing
the computational efficiency. Numerical results show the accuracy and efficiency enhancement

of the method.
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1. INTRODUCTION

Over the past two decades, model reduction
methods have become increasingly popular [1,12,21].
Such methods are designed to extract a reduced order
state-space model that adequately describes the
behavior of the system to study.

A low-order model for a large scale system brings
us an easy implementation. As opposed to a high-
order model that might require expensive or
complicated hardware; the low-order model has less
complicated and more easily available hardware.
Further more, in the high order systems the analysis
problems can not be solved within a reasonable time
and cost. So in many cases, it is advisable to construct
a reduced order model that approximates the physical
behavior of the original system.

The reduction techniques are divided into two
broad  categories, namely  singular  value
decomposition (SVD) based methods and moment
matching based techniques. The first category consists
of the methods like balanced truncation that preserves
stability and has an upper bound for approximation
error. Moment matching based methods like Krylov
subspace method can be implemented iteratively,
which leads to numerical efficient algorithms, but
these do not automatically preserve stability and have
no error bound [1,21]. Some of the proposed reduction
methods are trying to reduce the absolute error and
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some others are trying to reduce the relative error ag a
measure for the approximation accuracy. The balanced
stochastic truncation (BST) approach belongs to the
family of relative error methods [17]. In contrast to
absolute error methods like the balanced truncation
(BT) or the singular perturbation approximation (SPA)
method, the BST method has the main advantage in
provision of a uniform approximation of the
frequency response of the original system over the
whole frequency domain, and particularly, in
preservation of phase information [2]. For example,
for a minimum-phase original system, the BST-
approximation is also minimum-phase. However this
is not generally true for the absolute error methods. In
practical control engineering viewpoint usually. a
system is operating within a frequency bound and the
system can be shut down outside of this frequency
bound. Since we do not have to keep the
approximation in permissible outside range of the
operational bandwidth of the system, the accuracy can
be increased if we confine the approximation within a
frequency bound.

Bases on this idea the frequency domain balanced
truncation within a frequency bound (FDBT) is
proposed [3-8,13-16,20]. In this paper we proposed a
new method for relative error model reduction which
is based on BST and FDBT approaches and we aall
the proposed method by frequency domain balanced
stochastic truncation (FBST). The proposed method is
more accurate and more efficient than previous
methods in the context of relative error model
reduction like BST. The paper is organized as follows.
In Section 2, we introduce some definitions, notations
and concepts for BST. Section 3 consists of presenting
FDBT algorithm and its properties. In Section 4, the
FBST method based on some of the numerical recent
algorithms like inner-outer factorization is presented.
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In Section 5 the method is developed to discrete time
systems. The method is applied to a practical CD
player benchmark example in Section 6 and the results
are shown. Finally in the last section some
conclusions are given.

2. BALANCED STOCHASTIC TRUNCATION
MODEL REDUCTION

Consider G(s) a MIMO square transfer matrix
with a minimal sate space realization G :=(4,B,C,
D) and of order n. If D is nonsingular it is possible to
compute the left spectral factor i (s)of G(s)GT(—s)
satisfying:

v (=) (s) = G(s)GT (~s). (1)

The state space realization of G is called a balanced
stochastic realization if:

WCG = Wol// = dlag(o-] ,---90-;1 )’ (2)

where WCG is the controllability Gramian of G(s),

the matrix W, is the observability Gramian of

th

w(s) and o; is the i Hankel singular value of

the stable part of the so-called “phase matrix”
F(s)=(w" (-5))'G(s). The singular values in (2)
are ordered decreasingly [2,18,22].

We assume now that G is already stochastically
balanced by an appropriate similarity transformation.
The reduced model is obtained by eliminating the
states related to the lowest set of singular values. The
reduced model is stable and satisfies the relative error
bound:

n

<T1I o . 3)

C izl 1- O

le"'c-c,)

This model reduction approach is called balanced
stochastic truncation (BST) [2,19].

3. FREQUENCY-DOMAIN BALANCED
TRUNCATION WITHIN A FREQUENCY
BOUND

Consider the following n'™ order state-space model
representation of an asymptotic stable LTI system:

HREH

The problem is how to approximate the system with

" order state-space model:

(4,,B.,C,..D.) where r<n. (5)

The approach which is commonly used and
globally more accurate is the so-called Balanced
Model Reduction introduced by Moore, for the first
time [9]. In this method, the system is transformed to
a basis where the states which are difficult to reach are
simultaneously difficult to observe. Then, the reduced
model is obtained simply by truncating the states
which have this property. Considering the practical
operation of the system within frequency bound and
outside of it where some amount of inaccurate
approximation is allowed, the accuracy can be
improved if the balanced model reduction method is
employed in the frequency band [3-8,13-16,20].

Controllability and observability Gramians in terms
of w over a frequency bound [w,w,] are defined

as following [3-8,20]:
W= [ (w47 BB (~Ljw-4") aw,
2 Wy
i 1 (6)
— 1 N _ * _1 * . _ -
W, '—2;zJ:Z( Iw-A)Y'C"Cljw- 4) aw.

Those are the solutions for the following Lyapunov
equations:

AW, + Wy A =—(BB'F +FBB"),

* * K % (7)
AWy +Wypd=~(C'CF +F'C°0),
where F is defined by:
F={"(jw— )" dw ®)
w

with an appropriate similarity transformation 7 and
change of the basis, system realization in (1) can be
transformed to a new balanced realization, so that the
Gramians are equal and diagonal (in decreasing
diagonal elements):

Wy = = dig(01, 030000 ©)

Here we have two important theorems that give us a
physical interpretation for the reduction procedure [3-
8,20].

Theorem 1: The frequency-domain controllability
Gramian represents the energy flow of the system
through each state variable within the frequency range
[wy, Wy ].

It means that if the unit white Gaussian noise test
input signal u(f), and state vector x(¢#) of the

system defined as follows:

u(jw)[u(jw)]* — |u(jw)12 _ {1 wy < |w| < Wy

0 elsewhere,

F
x(t) = e Bu(t) <(wl — A) ' Bu(jw) = X (jw).



182

The energy of the system through controllability
Gramian is as follows:

E = jgox(t)x* (t)dt

= L J'wz (ywl - A)_1 Bu(jw)u* (w)
2w
B (—jwl — 4") ' aw

=Werlwi, wy 1.

Theorem 2: The frequency-domain observability
Gramian represents the energy flow of the system
through each state variable within the frequency range

[Wl » Wy ]
Consider a unit injected test signal x,, where

« |1
XoXp = 0

Define output

W <w<w,y

elsewhere.

F
y(t) 2 Cet'xy = CwI — 4) ' xy = Y (jw).

The energy E, of the system through observability
Gramian is obtained by:

E, = [y ()ar
* 1 w. 3 *\— * . —
= X {5; jwf (—jwl =AY CCjwl - 4) ldw]xo

Now, x, being a white noise test signal, the result
follows:

Ey = Vch[WI,Wz].

From the above theorems and (9), it is understood
that for having a good approximation we should only
truncate the states that are related to the lowest
singular values in (9). This model reduction technique
is called frequency domain balanced truncation within
a frequency bound (FDBT). This method also
preserves the stability and provides an error bound for
absolute error.

4. FREQUENCY-DOMAIN STOCHASTIC
BALANCED TRUNCATION

This section is the main part of this paper in which
a new method for large scale model reduction is
proposed. FBST keeps the advantages of BST within
frequency bound and increases the accuracy of the
approximation within a desired bounded frequency. In
this model reduction method we do not have to
involve the difficulties for solving Lyapanuv
equations, we can implement numerical algorithm
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easily, approximating the integral to summation for
finding Gramians under the definition (6). Numerical
results in the next section show the accuracy and
efficiency enhancement of the proposed method.

In FBST algorithm like BST at first we should find

the left spectral factor w(s) of G(s)GT(—S)

satisfying (1). In order to compute the left spectral
function we apply inner-outer factorization of [2,11]
to  factorize the state space  realization

N=(4wfcT + BDT BT )™,DTY in the form
N;(s)w(s) where N;(s) is the inner factor and
w(s) is the outer factor and the left spectral factor [2].

After the computation of the left spectral factor we
change the state space representation by an
appropriate similarity transform into stochastically
balanced structure which we call that “frequency
domain stochastic balanced realization”. In the
frequency domain stochastic realization the frequency
domain controllability Gramian of G(s) and the
frequency domain observablity Gramian of the left
spectral factor should be equal and diagonal and the
diagonal elements should be in decreasing order:

W =W =diag(cy,...0,). (10)

The reduced model is obtained by eliminating the
states related to the lowest set of singular values. The
reduced model is also stable and satisfies the relative
error bound similar to (3):

=r+1 4

67 Gwxcmw -6, Gwy| < f[ fj’ L

Inputs : system matrices (4,B,C,D) and the
frequency ranges [w,w»]
Outputs : reduced system matrices (4,,B,,C,,D,)

1- Form:
N=(4wfc" +BD",-BT(wCy !, D)

2- Apply inner-outer factorization and find the
left spectral factor (s)

3- Compute the frequency domain controllability
Gramian of the (4,B,C,D) system within a
frequency bound [wy,w,]

4- Compute the frequency domain observability
Gramian of the left spectral factor w(s)

within a frequency bound [wy,w-]

5- Find the similarity transformation 7 for
stochastically balancing and balance the
system stochastically.

6- Eliminate the states related to the lowest set of
the singular values and find (4,,B,,C,,D,)

Fig. 1. FBST model reduction algorithm.
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Fig. 1 shows the overall algorithm of FBST method.
The relation between FBST and BST reduction
methods is exactly the same as the relation between
balanced truncation and frequency domain balanced
truncation methods. If we extend the frequency bound
to [—,+0] in FBST, we achieve the same results as

BST. FBST can be applied to all asymptotically stable
dynamical systems which are square and nonsingular.
Frequency domain stochastic balanced truncation in
[wy,w,] yields a uniformly good approximant over this
frequency range instead of small absolute errors. Also
it is possible to show that for minimal phase systems,
frequency domain stochastic balanced truncation is
the same as self-weighted frequency domain balanced
truncation where the output weighting is given by

G7l(s).

5. DISCRETE TIME FREQUENCY- DOMIAN
STOCHATIC BALANCED TRUNCATION

For discrete time systems with transfer matrix G(z)
and state-space representation:

xlk+1]) (4 B x[k] (12)
Ak )\ D ulkl)
the frequency domain controllability and observabilty
Gramians within [wy,w,] are defined by:

L oowi, jw T
W, =— Ie’” — A BB ({Ie/” —4) dw,
e ) BB( )

._L W ~jw g5\ A Jw ol
Wer = jwz (le A cye™ - Ay aw
(13)

Inputs : system matrices (4,B,C,D) and the
frequency ranges [wy,ws]
Outputs : reduced system matrices (4,,8,,C,,D,)

1- Form:
N=4wCcT +BDT ,—BT W), D7)

2- Apply inner-outer factorization and find the
left spectral factor w(z)

3- Compute the frequency domain controllability
Gramian of the (4,B,C,D) system within a
frequency bound [wy,w,]

4- Compute the frequency domain observability
Gramian of the left spectral factor w(z)
within a frequency bound [w;,w,]

5- Find the similarity transformation 7T for
stochastically balancing and balance the
system stochastically.

6- Eliminate the states related to the lowest set of
the singular values and find (4,,B,,C,.D,)

Fig. 2. FBST model reduction algorithm.

[8], and w(z) is the left spectral factor of G{(z) if [2]:

G(2)GT (z Ny=ypT 2 H(2) (14)

Discrete time FBST algorithm is similar to FBST
algorithm for continuous case. The only differences
are computation of the Gramians based on (11)
instead of (6) and applying inner-outer factorization
based on the algorithm in [10] instead of [11]. Fig. 2
shows the discrete time FBST model reduction
algorithm.

6. PRACTICAL CD PLAYER BENCHMARK
EXAMPLE

In this section we applied the proposed method to a
strictly proper SISO practical CD player model of
order 120 and compare it with BST method.

6.1. CD player benchmark example

One of the well-known practical applications of
model order reduction is the control of CD player
systems. The scheme of CD player mechanism is
shown in Fig. 3. The control task is to achieve track
following, which basically amounts to pointing the
laser spot to the track of pits on the CD that is rotating.
This mechanism consists of a swing arm on which a
lens is mounted by means of two horizontal leaf
springs. The rotation of the arm in the horizontal plane
enable to read the spiral shaped disc-tracks, and the
suspended lens is used to focus the spot on the disc.
Due to the fact that the disc is not perfectly flat, and
due to irregularities in the spiral of pits on the disc, a
feedback system is needed. The higher the disc rate
goes, the stronger are the demands on feedback
controller, It is also required that the feedback system
can sustain some level of external shocks. The
challenge is to find a low-cost controller that can
make the servo system faster and less sensitive to
external shocks. In addition to this, it is required that
all CD-players of a production set can be equipped
with the same type of controller.

In practical point of view a high order model is
needed to describe the vibrational behavior of the

Fig. 3. CD Player.
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electro-mechanical system over a large frequency
range in order to anticipate the interaction with a
controller of possible high-bandwidth. In many
examples, the behavior of electrodynamics is
predicted by means of finite element and
substructuring method.

First the mechanism is divided in structural parts,
and these components are modeled by means of finite-
elements discretizations. The resulting model contains
60 vibration modes. In the other words the model that
we want to design a low cost controller for that is of
order 120 and we should reduce it.

6.2. Results and analysis

In this part the CD player model is reduced to 4th
order model by applying both BST and FBST. Fig. 4
shows the Hankel singular values for FBST method
related to the reduction frequency bound in Fig. 5. As
we mentioned before, the Hankel singular values in
balanced realization can give us useful information
about the contribution of each state in input/output
energy. In other words we can recognize the most
important set of states to be preserved. Fig. 4 shows
that the set of the first four states in frequency domain

]
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Fig. 4. FBST Hankel singular values.
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Fig. 5. FBST model reduction error (dash dotted) and
BST model order reduction error (solid lines).
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Fig. 6. FBST model reduction error (dash dotted) and
BST model order reduction error (solid lines).
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Fig. 7. FBST model reduction error (dash dotted) and
BST model order reduction error (solid lines).

balanced realization has the most contribution in
input/output energy. On the other hand from the gap
between the first four singular values and the others, it
is expected that the accuracy of approximation to 4th
order model by truncation will be satisfactory. The
infinity norm errors of BST and FBST are shown in
Figs. 5-7 in different frequency bounds. As we can see
in results, infinity norm approximation error in FBST
methed is less than approximation error by applying
BST technique. The uniformity of the error in FBST
is also satisfactory. The computational burden 'in
FBST is less than BST because in FBST not only we
do not have to solve Lyapunov equations for finding
Gramians, but also we can easily compute frequency
domain Gramian by approximating the integrals to
summation in definitions.

7. CONCLUSIONS
In this paper, we have proposed a new model

reduction method. The reduction method is based jon
stochastic balancing of a system within a frequency
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Inner-Outer factorization is used in the

numerical algorithm of the method as an accurate and
efficient numerical approach.

The proposed method shows advantages in high
accuracy, high efficiency, preservation of stability,
and provision of error bounds which are suitable for
the practical relative error model reduction.
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