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Abstract

Recently, the constrained index tracking problem, in which the task of trading a set of stocks
is performed so as to closely follow an index value under some constraints, has often been
considered as an important application domain for control theory. Because this problem
can be conveniently viewed and formulated as an optimal decision-making problem in a
highly uncertain and stochastic environment, approaches based on stochastic optimal control
methods are particularly pertinent. Since stochastic optimal control problems cannot be
solved exactly except in very simple cases, approximations are required in most practical
problems to obtain good suboptimal policies. In this paper, we present a procedure for finding a
suboptimal solution to the constrained index tracking problem based on approximate dynamic
programming. Illustrative simulation results show that this procedure works well when applied
to a set of real financial market data.
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1. Introduction

Recently, a large class of financial engineering problems dealing with index tracking and
portfolio optimization have been considered as an important application domain for several
types of engineering and applied mathematics principles [1–8]. Because this class can be
conveniently viewed and formulated as an optimal decision-making problem in a highly
uncertain and stochastic environment, particularly pertinent to this problem are approaches
based on stochastic optimal control methods. The stock index tracking problem is concerned
with constructing a stock portfolio that mimics or closely tracks the returns of a stock index
such as the S&P 500. Stock index tracking is of practical importance since it is one of
the important methods used in a passive approach to equity portfolio management and to
index fund management. To minimize tracking error against the target index, usually full
replication, in which the stocks are held according to their own weights in the index, or
quasi-full replication is adopted by the fund managers. An exchange traded fund (ETF) is
a good example of such portfolio management since it is constructed according to its own
portfolio deposit file (PDF). Such a full replication or quasi-full replication can be very costly
owing to transaction and fund administration costs. The constrained index tracking considered
in this paper is concerned with tracking a stock index by investing in only a subset of the
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stocks in the target index under some constraints. Because it
uses only a subset of the stocks and is expected to dramatically
reduce the management costs involved in index tracking and
simplify portfolio rebalancing more effectively, this problem is
particularly important to portfolio managers [7]. Successfully
constrained index tracking is also expected to increase the liq-
uidity of an ETF since we may be able to construct the same
ETF without investing in the same quantity of stocks in its PDF.
To achieve good tracking performance with a subset of stocks
in the index, several methods (e.g., control theory [1, 4], use
of genetic algorithms [3], and evolutionary methods [2]) have
been studied by researchers.

In this paper, we consider the use of approximate dynamic
programming (ADP) for solving the constrained index track-
ing problem. Recently, the use of ADP methods has become
popular in the area of stochastic control [9–12]. As is well
known, solutions to optimally controlled stochastic systems can
be well explained by using dynamic programming (DP) [9, 10].
However, stochastic control problems cannot be solved by DP
exactly except in very simple cases, and to obtain good sub-
optimal policies, many studies rely on ADP methods. ADP
methods have been successfully applied to many real-world
problems [13], including some financial engineering problems
such as portfolio optimization [5,11,12]. The main objective of
this paper is to extend the use of ADP to the field of index track-
ing. More specifically, we (slightly) modify a mathematical
formulation of the constrained index tracking problem in [1, 4]
and establish an ADP-based procedure for solving the resultant
stochastic state-space control formulation. Simulation results
show that this procedure works well when applied to real finan-
cial market data.

The remainder of this paper is organized as follows: In Sec-
tion 2, preliminaries are provided regarding constrained index
tracking and ADP. In Section 3, we describe our main results
from an ADP-based control procedure for the constrained index
tracking problem. In Section 4, the effectiveness of the ADP-
based procedure is illustrated by using real financial market
data. Finally, in Section 5, concluding remarks are presented.

2. Preliminaries

In this paper, we examine constrained index tracking based
on ADP. In the following, we describe some fundamentals
regarding constrained index tracking and ADP.

2.1 Constrained Index Tracking Problem

In this section, we describe a constrained index tracking prob-
lem [1, 4], in which an index of stocks is tracked with a subset
of these stocks under certain constraints, as a stochastic control
problem. We consider the index I(t) defined as a weighted
average of n stock prices, s1(t), · · · , sn(t). Note that the stock
prices are generally modeled as correlated geometric Brownian
motions [1, 14], i.e.,

dsi(t) = µ̂isi(t)dt+ si(t)dbi(t), , i = 1, · · · , n, (1)

where µ̂i is the drift of the ith stock, and

b(t)
4
= [b1(t), · · · , bn(t)]T

is a vector Brownian motion satisfying

E[db(t)] = 0, and E[db(t)db(t)T ] = Σ̂dt. (2)

By performing discretization using the Euler method with time
step4t, one can transform Eq. (1) into the following discrete-
time asset dynamics [14]:

si(t+ 1) = (1 + µi + wi(t))si(t), i = 1, · · · , n, (3)

where

µi = µ̂i4t, E[wi(t)] = 0, and E[wi(t)wj(t)] = Σ̂ij4t.
(4)

Note that with

µ
4
= [µ1, · · · , µn]T ,

w(t)
4
= [w1(t), · · · , wn(t)]T ,

g(t)
4
= [ s1(t+1)

s1(t)
− 1, · · · , sn(t+1)

sn(t)
− 1]T ,

Σ
4
= Σ̂4t,

(5)

we have

E[w(t)] = µ,

E[w(t)wT (t)] = Σ,

E[g(t)gT (t)] = µµT + Σ.

(6)

Further, note that with

s(t)
4
= [s1(t), · · · , sn(t)], (7)

the index value defined by a weighted average can be expressed
as

I(t) = αT s(t) (8)
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for some α ∈ Rn satisfying αi ≥ 0, ∀i ∈ {1, · · · , n}, and∑n
i=1 αi = 1. Without loss of generality, in this paper we

assume α = 1
n1; i.e., the index I(t) is assumed to be the equally

weighted average of the stock prices. Under this assumption,
we have

I(t) = αT s(t) =
1

n
1T s(t) =

1

n
(s1(t) + · · ·+ sn(t)). (9)

Extending the results of this paper to a general α case will
be straightforward. The continuous dynamics for the risk-free
asset (e.g., the continuous time bond) can be modeled by

dC(t) = r̂fC(t)dt, (10)

where r̂f is the risk-free rate [14]. When the time step is 4t,
its discretized version can be written as

C(t+ 1) = (1 + rf )C(t), (11)

where rf = r̂4t [14]. We assume that the money amounts of
the first m < n stocks, y1(t), · · · , ym(t), and the amount of
the risk-free asset, yC(t), consist of our portfolio vector y(t) at
time t, i.e.,

y(t)
4
= [y1(t), · · · , ym(t), yC(t)]T . (12)

Note that it is the total value of this portfolio vector that should
track the index value over time. More precisely, our goal is to
let the wealth of our portfolio,

W (t)
4
= y1(t) + · · ·+ ym(t) + yC(t) = 1Ty(t), (13)

approach sufficiently close to the index value I(t) = αT s(t) as
t→∞ by performing appropriate trades, u1(t), · · ·um(t) and
uC(t) for the first m stocks and the risk-free asset, respectively,
at the beginning of each time step t. Hence, a solution to the
constrained index tracking problem can be found by considering
the following optimization problem:

minu(·) E[
∑∞
t=0 γ

tdist(I(t),W (t))]

subject to
si(t+ 1) = (1 + µi + wi(t))si(t), i = 1, · · · , n,
yi(t+ 1) = (1 + µi + wi(t))(yi(t) + ui(t)),

(14)

i = 1, · · · ,m,
yC(t+ 1) = (1 + rf )(yC(t) + uC(t)),

(s1(t), · · · , sn(t), y1(t), · · · , ym(t), yC(t), u1(t),

· · · , um(t), uC(t)) ∈ Ct,

where γ ∈ (0, 1) is a discount factor, dist(a, b) is the distance
between a and b, and Ct is a constraint set. Details about
the distance function, dist(a, b), and the constraint set, Ct, are
presented in Section 3.

2.2 Approximate Dynamic Programming

Dynamic programming (DP) is a branch of control theory con-
cerned with finding the optimal control policy that can minimize
costs in interactions with an environment. DP is one of the most
important theoretical tools in the study of stochastic control. A
variety of topics on DP and stochastic control have been well
addressed in [9–12]. In the following, some fundamental con-
cepts on stochastic control and DP are briefly summarized. For
more details, see, e.g., [11]. A large class of stochastic control
problems deal with dynamics described by the following state
equation:

x(t+ 1) = f(x(t),u(t),w(t)), t = 0, 1, · · · , (15)

where x(t) ∈ X is the state vector, u(t) ∈ U is the control
input vector, and w(t) ∈ W is the process noise vector. Here,
the noise vectors w(t) are generally assumed to be independent
and identically distributed (IID). Many stochastic control prob-
lems are concerned with finding a time-invariant state-feedback
control policy

u(t) = φ(x(t)), t = 0, 1, · · · (16)

that can optimize a performance index function. A widely used
choice for the performance index function of infinite-horizon
stochastic optimal control problems is the expected sum of
discounted stage costs, i.e.,

Jφ = E[

∞∑
t=0

γt`(x(t), φ(x(t))], (17)

where `(·, ·) is the stage cost function. By minimizing this
performance index function over all admissible control polices
φ : X → U , one can find the optimal value of Jφ. This
minimal performance index value is denoted by J∗, and an
optimal state-feedback function achieving the minimal value
is denoted by φ∗. The state value function V ∗(z) is defined as
the optimal performance index value conditioned on the initial
state x(0) = z, i.e.,

V ∗(z) = inf
φ
E[

∞∑
t=0

γt`(x(t), φ(x(t)) | x(0) = z] (18)
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According to optimal control theory [9, 10], the state value
function V ∗ : X → R is the unique fixed point of the Bellman
equation

V ∗(z) = inf
v

(`(z,v) + γE[V ∗(f(z,v,w))]), (19)

and an optimal control policy φ∗ : X → U can be found by

φ∗(z) = arg min
v

(`(z,v) + γE[V ∗(f(z,v,w))]). (20)

In its operator form, the Bellman equation can be written as

V ∗ = T V ∗, (21)

where T is the operator (whose domain and codomain are both
function spaces mapping X into R ∪ {∞}) defined as

(T V )(z)
4
= inf

v
(`(z,v) + γE[V (f(z,v,w))]) (22)

for any V : X → R ∪ {∞}. The operator T for the Bellman
equation is called the Bellman operator (see, e.g., [11]). As is
well known, the state value function V ∗ and the corresponding
optimal control policy φ∗ cannot be solved exactly except in
simple special cases [9, 11]. An efficient strategy when finding
the exact state value function is impossible is to rely on an
approximate state value function V̂ : X → R. By applying this
strategy to Eq. (20), one can find a suboptimal control policy
φadp : X → U via

φadp(z) = arg min
v

(`(z,v) + γE[V̂ (f(z,v,w))]). (23)

In this paper, we apply this ADP strategy to the constrained
index tracking problem.

3. ADP-Based Constrained Index Tracking

In this section, we describe constrained index tracking in the
framework of a stochastic state-space control problem, and we
present an ADP-based procedure to find a suboptimal solution
to the problem. To express the constrained index tracking prob-
lem in a state-space optimal control format, we need to define
the control input and state vector together with the performance
index that is used as an optimization criterion. The control
input we consider for the constrained index tracking problem is
a vector of trades,

u(t)
4
= [u1(t), · · · , um(t), uC(t)]T , (24)

executed for the portfolio

y(t)
4
= [y1(t), · · · , ym(t), yC(t)]T

at the beginning of each time step t. Note that ui(t) represents
buying or selling assets. That is, by ui(t) > 0, we mean buying
the asset associated with yi(t), and by ui(t) < 0, we mean
selling it. For a state-space description of the constrained index
tracking problem, we define the state vector as

x(t) = [s1(t), · · · , sn(t), y1(t), · · · , yC(t)]T . (25)

With these state and input definitions, the state transition of Eq.
(14) can be described by the following state equation:

x(t+ 1) = A(t)x(t) +B(t)u(t), (26)

where

A(t) =

 A11(t) 0 0

0 A22(t) 0

0 0 1 + rf

 ,
A11(t) = diag(


1 + µ1 + w1(t)

...
1 + µn + wn(t)

),

A22(t) = diag(


1 + µ1 + w1(t)

...
1 + µm + wm(t)

),

B(t) =

 0 0

B21(t) 0

0 1 + rf

 ,
B21(t) = diag(


1 + µ1 + w1(t)

...
1 + µm + wm(t)

).

(27)

As in [1], we assume that our stock prices are all normalized in
the sense that initially they start from

s1(0) = · · · = sn(0) = 1. (28)

A commonly used distance function for index tracking is the
squared tracking error [1], i.e.,

dist(I(t),W (t)) = (I(t)−W (t))2. (29)

Note that in this performance index function, both I(t) and
W (t) are defined by means of the entries of the state vector
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x(t). For the initial portfolio, we take

y(0) = [y1(0), · · · , ym(t), yC(0)]T

= [0, · · · , 0, 1]T ,
(30)

which means that the tracking portfolio starts from the all-cash
initial condition with a unit magnitude. With the above state-
space description, the problem of optimally tracking the index,
I(t), with the wealth of the tracking portfolio, W (t) = 1Ty(t),
over the infinite horizon can be expressed as the following
optimization problem:

minu(·)E[
∑∞
t=0 γ

t(I(t)−W (t))2]

subject to
x(t+ 1) = A(t)x(t) +B(t)u(t),

x(0) = [1, · · · , 1, 0, · · · , 0, 1]T .

(31)

In solving this index tracking problem, the tracking portfolio
y(t) and the control input u(t) should satisfy certain constraints
that arise naturally (e.g., no short selling or no overweighting in
a certain sector [1, 4]). The first constraint we consider in this
paper is the so-called self-financing condition,

Constraint #1 : 1Tu(t) = 0, t = 0, 1, · · · , (32)

which means that the total money obtained from selling should
be equal to the total money required for buying. Next, we im-
pose a nonnegativity (i.e., long-only) condition for our tracking
portfolio, i.e.,

Constraint #2 : yi(t) + ui(t) ≥ 0 (33)

for ∀i ∈ {1, · · · ,m}, ∀t ∈ {0, 1, · · · }. As a final set of con-
straints, in this paper we consider the following allocation upper
bounds:

Constraint #3 : (y1(t) + u1(t)) + · · ·
(ym(t) + um(t)) ≤ κ1W (t),

(34)

Constraint #4 : (yj(t) + uj(t)) ≤ κ2W (t), j ∈ J , (35)

where the κi are fixed positive constants less than 1. By
constraint #3, we mean that the fraction of the wealth invested
in the m risky assets (i.e., stocks) should not be larger than
κ1. Also, constraint #4 sets a similar upper bound on specific
stocks belonging to the set J . From these steps, the constrained

index-following problem can now be expressed as the following
stochastic control problem:

minu(·) E[
∑∞
t=0 γ

t(I(t)−W (t))2]

subject to
x(t+ 1) = A(t)x(t) +B(t)u(t),

x(0) = [1, · · · , 1, 0, · · · , 0, 1]T ,

all (or some) of constraints #1, #2, #3, and #4,

(36)

where I(t) = (1/n)1T s(t), W (t) = 1Ty(t), and x(t) =

[sT (t),yT (t)]T . Note that this formulation is a (slight) modi-
fication of the one used in [1, 4], and the state vector x(t) =

[s(t)T ,y(t)T ]T here contains (slightly) richer information com-
pared to the original one [1, 4], which uses the stock prices
and the total wealth of the tracking portfolio only. To solve
the above constrained index tracking problem via ADP, we
utilize the iterated-Bellman-inequality strategy proposed by
Wang, O’Donoghue, and Boyd [11,12]. In the iterated-Bellman-
inequality strategy, convex quadratic functions

V̂i(x) = xTPix + 2pi
Tx + qi, i = 0, · · · ,M, (37)

are used for approximating state value functions, and letting
parameters of the V̂i satisfy a series of Bellman inequalities

V̂0 ≤ T V̂1, V̂1 ≤ T V̂2, · · · , V̂M−1 ≤ T V̂M (38)

with V̂0 = V̂M , guarantees that V̂0 is a lower bound of the
optimal state value function V ∗ [11, 12].

In this paper, we obtain an ADP-based solution procedure
for the constrained index tracking problem of Eq. (36) utilizing
the iterated-Bellman-inequality strategy [11, 12]. To compute
the stage cost, we note that since the initial stock prices and the
initial cash amount are both normalized (i.e., s1(0) = · · · =

sn(0) = 1 and yC(0) = 1), the initial tracking error I(0) −
W (0) is equal to zero. Hence, the performance index can be
equivalently written as∑∞

t=0 γ
t+1E[(I(t+ 1)−W (t+ 1))2] =

(
∑∞
t=0 γ

tE[(I(t+ 1)−W (t+ 1))2])× γ.
(39)

For simplicity and convenience, we use the first term on the
right-hand side of Eq. (39) as our new performance index func-
tion, i.e.,

PI
4
=

∞∑
t=0

γtE[(I(t+ 1)−W (t+ 1))2]. (40)
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Now we consider the tracking error at time t+ 1 conditioned
on x(t) = z and u(t) = v. For notational convenience,

we let z
4
= [sT ,yT ]T , and we define sa, sb, ya, and va as

follows: sa
4
= [s1, · · · , sm]T , sb

4
= [sm+1 · · · , sn]T , ya

4
=

[y1, · · · , ym]T , and va
4
= [v1, · · · , vm]T . Note that, with these

definitions, we have

s =

[
sa

sb

]
, y =

[
ya

yC

]
, v =

[
va

vC

]
. (41)

Then the tracking error I(t + 1) −W (t + 1) conditioned on
x(t) = z and u(t) = v satisfies the following:

I(t+ 1)−W (t+ 1)

= 1
n1

Tdiag(


1 + µ1 + w1(t)

...
1 + µn + wn(t)

)s

−1Tdiag(


1 + µ1 + w1(t)

...
1 + µm + wm(t)

1 + rf

)y

= 1
n1

Tdiag(


1 + µ1 + w1(t)

...
1 + µn + wn(t)

)sa

+ 1
n1

Tdiag(


1 + µm+1 + wm+1(t)

...
1 + µn + wn(t)

)sb

−1Tdiag(


1 + µ1 + w1(t)

...
1 + µm + wm(t)

)ya

(42)

−(1 + rf )yC .

Based on this equality, one can obtain an expression for the
stage cost, i.e., the expectation of the squared tracking error

at time step (t + 1) conditioned on x(t) = z =


sa

sb

ya

yC

 and

u(t) = v =

[
va

vC

]
as follows:

E[(I(t+ 1)−W (t+ 1))2 | x(t) = z,u(t) = v]

=

 v

z

1


T

L

 v

z

1



=

 v

z

1


T  L11 L12 L13

L12
T L22 L23

L13
T L23

T L33


 v

z

1

 , (43)

where

L11 =

[
Σ11 (1 + rf )µ1

(1 + rf )µ1
T (1 + rf )2

]
,

L12 =

[
− 1
nΣ11 − 1

nΣ12

− 1
n (1 + rf )µ1

T − 1
n (1 + rf )µ2

T

Σ11 (1 + rf )µ1

(1 + rf )µ1
T (1 + rf )2

]

L13 =

[
0

0

]

L22 =


1
n2 Σ11

1
n2 Σ12

1
n2 Σ12

T 1
n2 Σ22

− 1
nΣ11 − 1

nΣ12

− 1
n (1 + rf )µ1

T − 1
n (1 + rf )µ2

T

− 1
nΣ11 − 1

n (1 + rf )µ1

− 1
nΣ12

T − 1
n (1 + rf )µ2

Σ11 (1 + rf )µ1

(1 + rf )µ1
T (1 + rf )2



L23 =


0

0

0

0

 , L33 = 0.

(44)

Note that here the µi and the Σij are the block components
of µ and Σ, respectively, i.e.,

µ =

[
µ1

µ2

]
, and Σ =

[
Σ11 Σ12

Σ12
T Σ22

]
. (45)

Now we let the derived matrix variables Gi, i = 1, · · · ,M ,
satisfy the following: v

z

1


T

Gi

 v

z

1

 = E[V̂i(A(t)z +B(t)v)]. (46)

Here, the expectation in the right-hand side is equal to

E

[ Az +Bv

1

]T [
Pi pi

pTi qi

][
Az +Bv

1

]
=

 v

z

1


T

E

[ B A 0

0 0 1

]T [
Pi pi

pTi si

]
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[
B A 0

0 0 1

] 
 v

z

1

 (47)

Then, by evaluating the right-hand side of Eq. (47), we obtain

Gi =

 Gi,11 Gi,12 Gi,13

(Gi,12)T Gi,22 Gi,23

(Gi,13)T (Gi,23)T Gi,33

 (48)

where

Gi,11 =

[
Pi,33 ◦ Σ11 (1 + rf )µ1 ◦ Pi,34

(1 + rf )PTi,34 ◦ µT1 (1 + rf )2Pi,44

]
,

Gi,12 =

[
PTi,13 ◦ Σ11 PTi,23 ◦ Σ12

(1 + rf )PTi,14 ◦ µT1 (1 + rf )PTi,24 ◦ µT2
Pi,33 ◦ Σ11 (1 + rf )µ1 ◦ Pi,34

(1 + rf )PTi,34 ◦ µT1 (1 + rf )2Pi,44

]
,

Gi,13 =

[
µ1 ◦ pi,3

(1 + rf )pi,4

]
,

Gi,22 =


Pi,11 ◦ Σ11 Pi,12 ◦ Σ12

PTi,12 ◦ ΣT12 Pi,22 ◦ Σ22

PTi,13 ◦ Σ11 PTi,23 ◦ Σ12

(1 + rf )PTi,14 ◦ µT1 (1 + rf )PTi,24 ◦ µT2

(49)
Pi,13 ◦ Σ11 (1 + rf )µ1 ◦ Pi,14
Pi,23 ◦ ΣT12 (1 + rf )µ2 ◦ Pi,24
Pi,33 ◦ Σ11 (1 + rf )µ1 ◦ Pi,34

(1 + rf )PTi,34 ◦ µT1 (1 + rf )2Pi,44

 ,

Gi,23 =


µ1 ◦ pi,1
µ2 ◦ pi,2
µ1 ◦ pi,3

(1 + rf )pi,4

 ,
Gi,33 = qi.

In Eq. (49), the Pi,jk and the pi,j are the block components of
Pi and pi, respectively, i.e.,

Pi =


Pi,11 Pi,12 Pi,13 Pi,14

(Pi,12)T Pi,22 Pi,23 Pi,24

(Pi,13)T (Pi,23)T Pi,33 Pi,34

(Pi,14)T (Pi,24)T (Pi,34)T Pi,44

 ,

pi =


pi,1

pi,2

pi,3

pi,4

 ,
(50)

and ◦ denotes the elementwise product.

Note that the constraints considered in this paper are all linear.
Hence, the left-hand sides of our constraints can be expressed
as

E(k)u(t) + F (k)x(t), k = 1, · · · , 4. (51)

More specifically, the first constraint can be written as

E(1)u(t) + F (1)x(t) = 0, (52)

where E(1) = 11×(m+1) and F (1) = 01×(n+m+1). Further, the
linear inequality constraints can be given in the form

E(k)u(t) + F (k)x(t) ≤ 0, k = 2, 3, 4, (53)

where

E(2) = −I(m+1),

F (2) =
[
0(m+1)×n,−I(m+1), 0(m+1)×1

]
,

E(3) = [11×m, 0] ,

F (3) =
[
01×n, E

(3) − κ111×(m+1)

]
,

E(4) =


eTj1 , 0

...
...

eTj|J|
, 0

 ,
F (4) =

[
0|J|×n, E

(4) − κ21|J|×(m+1)

]
.

(54)

Note that, in Eq. (54), the allocation constraint set J is de-
scribed by {j1, · · · , j|J |}, where |J | is the number of entries
in J . Also, note that here ej means the jth column of the
identity matrix Im. With all these constraints required for the
input-state pair (v, z), the resultant constrained Bellman in-
equality condition becomes the following: Whenever (v, z)

satisfies

E(1)v + F (1)z = 0,

E(k)v + F (k)z ≤ 0, k = 2, 3, 4,
(55)

we must have v

z

1


T

(L+ γGi − Si−1)

 v

z

1

 ≥ 0, i = 1, · · · ,M − 1,

(56)
where Si−1 is the derived matrix variable defined by

Si−1
4
=

 0 0 0

0 Pi−1 pi−1

0 pi−1 qi−1

 . (57)
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Finally, note that one can obtain the following sufficient condi-
tion for the constrained Bellman inequality requirement in Eqs.
(55) and (56) using the S procedure [15]:

L+ γGi − Si−1 +
∑4
k=1 ν

(k)
i Λ(k) ≥ 0,

diag(ν
(k)
i ) ≥ 0, k = 2, 3, 4,

(58)

where the ν(k)i are S-procedure multipliers (with appropriate
dimensions) [15], and

Λ(k) 4=

 0 0 E(k)/2

0 0 F (k)/2

(E(k)/2)T (F (k)/2)T 0

 . (59)

By combining all the above steps together, the process of
finding a suboptimal ADP solution to the constrained index
tracking problem can be summarized as follows:

[Procedure]

Preliminary steps:

1. Choose the discount rate γ and the allocation upper
bounds κ1 and κ2.

2. Estimate µ, Σ, and rf .

Main steps:

1. Initialize the decision-making time t = 0, and let x(0) =

[1, · · · , 1, 0, · · · , 0, 1].

2. Compute the stage cost matrix L of Eq. (43) and the Λ(k)

of Eq. (59).

3. Observed the current state x(t), and set z = x(t).

4. Define LMI variables:

(a) Define the basic LMI variables, Pi, pi, and qi of Eq.
(37).

(b) Define the derived LMI variables, Gi of Eq. (48)
and Si of Eq. (57).

(c) Define the S-procedure multipliers, ν(k)i of Eq. (58).

5. Find an approximate state value, V̂0(z), by solving the

following LMI optimization problem:

min V̂0(z) = zTP0z + 2p0z + q0

s.t. L+ γGi − Si−1 +
∑4
k=1 ν

(k)
i Λ(k) ≥ 0,

i = 1, · · · ,M, k ∈ K ⊂ {2, 3, 4},
S0 = SM ,

Pi ≥ 0, i = 0, · · · ,M,

diag(ν
(k)
i ) ≥ 0, i = 1, · · · ,M, k ∈ K ⊂ {2, 3, 4}.

6. Obtain the ADP control input, u(t), as the optimal solu-
tion v∗ of the following quadratic program:

minv

 v

z

1


T

(L+ γG0)

 v

z

1


s.t. E(1)v + F (1)z = 0,

E(k)v + F (k)z ≤ 0,

k ∈ K ⊂ {2, 3, 4}

and trade accordingly.

7. Proceed to the next time step, i.e., t← (t+ 1).

8. (optional) If necessary, update µ, Σ, and rf .

9. Go to step 2.

4. An Example

In this section, we illustrate the presented ADP-based procedure
with an example of [1], which dealt with daily prices of five
major stocks from November 11, 2004, to February 1, 2008.
The index I(t) in the example was defined based on IBM, 3M,
Altria, Boeing, and AIG (the ticker symbols of which are IBM,
MMM, MO, BA, and AIG, respectively). Their stock prices
during the considered test period are shown in Figure 1.

As the subset comprising the tracking portfolio, the first three
stocks, s1, s2, and s3 (i.e., IBM, MMM, and MO) were chosen.
Note that n = 5 and m = 3 in this example. During the test
period, the ADP-based tracking portfolio was updated every
30 trading days. In this update, the mean return vector µ and
the covariance matrix Σ were estimated by averaging the past
daily raw data via the exponentially weighted moving average
(EWMA) method with the decay factor λ = 0.999. For the risk-
free rate, we assumed r̂ = 0.03 as in [1]. Between each 30-day
update, the number of shares in the tracking portfolio remained
the same. The ADP discount factor was chosen as γ = 0.99.
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Figure 1. Normalized stock prices from November 11, 2004, to
February 1, 2008.

Table 1. Simulation scenarios

Scenario Constraints

1 #1, #2, #3 (κ1 = 0.8)

2 #1, #2, #3 (κ1 = 0.7), #4 (κ2 = 0.2)

As described in Section 3, the performance index function was
computed based on the mean-square distance between the index
and the portfolio wealth. Finally, the allocation upper bound
was considered for the first stock (i.e., J ={IBM}).
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Figure 2. Control inputs (Scenario #1).
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Figure 3. Index vs. wealth of the tracking portfolio (Scenario #1).
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Figure 4. Total percent allocation in stocks (Scenario #1).
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Figure 5. Percent allocations in stocks and cash (Scenario #1).

We considered two scenarios with different constraints (Table
1). As shown in Table 1, trading has more severe constraints as
the scenario number increases. In the first scenario, we traded
with fundamental requirements (i.e., self-financing and a non-
negative portfolio) and the total allocation bound constraint (i.e.,
Constraint #3). For the upper bound constant for constraint #3,
we used κ1 = 0.8. This bound means that the total investment
in the three stocks (IBM, MMM, and MO) was required to be
less than or equal to 80% of the total portfolio value. The con-
trol inputs obtained by the ADP procedure are shown in Figure
2. Applying these control inputs, we obtained the simulation
results of Figures 3–5. Figure 3 shows that the ADP-based port-
folio followed the index closely in Scenario #1. Figure 4 shows
that the 80% upper bound condition for the total allocation in
stocks was well respected by the ADP policy in Scenario #1.
The specific portion of each stock in the tracking portfolio is
shown in Figure 5.

This figure, together with Figure 2, shows that the control
inputs changed the initial cash-only portfolio rapidly into the
stock-dominating positions for successful tracking.

In the second scenario, more difficult constraints were im-
posed. More specifically, the κ1 value was reduced to 0.7, and
the allocation in the first stock (i.e., IBM) was required not to
exceed 20% of the total portfolio wealth. The control inputs
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and simulation results for Scenario #2 are shown in Figures
6–9.

These figures show that, although the tracking performance
was a little degraded owing to the additional burden, the wealth
of the ADP-based portfolio followed the trend of the index
most of the time reasonably well with all the constraints being
respected.
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Figure 6. Control inputs (Scenario #2).
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Figure 7. Index vs. wealth of the tracking portfolio (Scenario #2).
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Figure 8. Total percent allocation in stocks (Scenario #2).
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Figure 9. Percent allocations in stocks (Scenario #2).

5. Concluding Remarks

The constrained index tracking problem, in which the task of
trading a set of stocks is performed so as to closely follow
an index value under some constraints, can be viewed and
formulated as an optimal decision-making problem in a highly
uncertain and stochastic environment, and approaches based on
stochastic optimal control methods are particularly pertinent.
Since stochastic optimal control problems cannot be solved
exactly except in very simple cases, in practice approximations
are required to obtain good suboptimal policies. In this paper,
we studied approximate dynamic programming applications
for the constrained index tracking problem and presented an
ADP-based index tracking procedure. Illustrative simulation
results showed that the ADP-based tracking policy successfully
produced an index-tracking portfolio under various constraints.
Further work to be done includes more extensive comparative
studies, which should reveal the strengths and weaknesses of
the ADP-based index tracking, and applications to other types
of related financial engineering problems.
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