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Numerical Solution of an Elliptic Type H-J-B
Equation Arising from Stochastic Optimal Control Problem
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I. Introduction

Dynamic programming method developed by
Bellman{1] can be considered as a powerful method
of optimal control problem in the sense that it yields
necessary and sufficient optimal solutions. Computa-—
tional solutton of the optimality condition, namely the
H-J-B equation(Bellman equation), is very difficult
due to the complexity and the dimentionality involved
in the solution process. In this paper, numerical
solution of the Bellman equation arising from the
stochastic control problem with infinite time horizon
is obtained. In this case, we solve the elliptic type
Bellman equation which is a nonlinear partial differe-
ntial equation. We discretize the Bellman equation
applying the finite difference method described in [2],
and modified the discrete Bellman equation to the
fixed point form using contraction mapping method
[3,4] for the iterative numerical solution of the
equation. Test case is also constructed in order to
validate the numerical scheme. Map of optimal
controls is also obtained for both test case and
engineering example.

II. The Bellman equation
The Bellman equation also known as the dynamic
programming equation arises in the general classes of
stochastic control problems such as optimal regula-
tion, tracking and stopping. We take the following
stochastic dynamic system which can be either linear
or nonlinear.

Ay Ls) = m{(s, y:(9)ds+ ZIGZ-(s, vi(s)dw;(s) (1)

i=1,2,..., n
where
Y0 =x={x1, %, ..., %x,}, w; is a standard Wiener
process, and yi(s) represents the solution of (1) at
time s evolved from x with control «.
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Equation (1) is called the It, stochastic differential
equation if m{ and o} satisfy the so called It,
conditions [b]. We take the following Bolza type of

cost functional which can be used for the problem of
regulation or tracking. The costs f* and ¢(-)

become quadratic function in case of regulation or

~ tracking problem, ie. refer (13).

S, u)=
Ef [ 000 @) exp( = [ (Ddo)as @)

+ o (¥ (2(w))) exp[— fot(u)cu(w(y:(a)(o))da}}

where
E, ., conditional expectation for {x,},
U={uy, us, u3, ...} - set of all possible control actions,
u(s)=u;,
(), () : costs of random process in the domain
(2 and boundary (6.9) of ¥ refer (13) for
quadratic case,
@ discount factor,
Hw)= inf{£0,y*’(HeQ), and E,,(u)(o for each
xsd 2.

Let o(x)= ill}f Jx, w). (3)

Now applying the dynamic programming approach [1]
and It,'s lemmal5] to (1), (2), (3) yield the following

Bellman equation as the optimality condition, which is
an elliptic nonlinear partial differential equation.
max { L(x)v(x) — fA(x)} =0 for x= Q (4)
uel

Wx)= ¢ (x) forx €92
where

2
L) == Dal g 2g + 2bi) 3 + (),
& [Ad) i
a= 5 SR D), b =—mi(2)

III. Numerical solution of the Bellman equation
Finite difference discretization [2] of the Bellman
equation yields the following equation.
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m{gugu,—ﬁ}=o where 4,j=1,2,....N  (5)
uelU
Modifying the discrete Bellman equation to the form
of a fixed point iteration [3,4] yields

vi= min{ZHZv,-F 7’:‘} (6)
uslU !
where
-Di .. ., . .
Hi= o if i#7,0 otherwise
i

IV. Construction of a test case

The actual performance of an algorithm might be
different from what we expected in term of mathe-
matical reasoning. Thus, we construct a test casel6]
which can solve the Bellman equation exactly. By
comparing the numerical solution with the exact one,
the performance of the algorithm can be examined
and validated.

For simplicity, we take a 2-D case for the domain

of the test case. As a cosequence, let domain Q be
rectangle (Fig. 1) such that Q2={ (x; xy):0{x < a,

0<x< b ).
In view of the boundary condition of the Bellman

equation, the following can be assumed as the exact
solution.
U(xl,xz) =¢(x1, %) + /15(761, x2) (7
where _ _
#(x), %) =x1(x; — @xa(xp~ b)
5(951,752) :{x1(x1‘z)}a{xz(x2—_b)}ﬁ
Then o(x,x,) satisfies the boundary condition of
the following Bellman equation.
;nea[)jc {L*Cxy, x)0(xy, 25) — F*(x1, %)} =0 (®)

for (x;,x)ER

v(xl,x2)=0 fOr (xl,xg)E 082
where

“ IR SR L « “
L (xl,X2)— %axj axl_axj Zlmz axi+c

A

ol

v

0

‘a
Fig. 1. Domain of the test case.

In order to guarantee the uniqueness of solution[5],
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we take the operator L*(x; x,) in the following

form.

L*(x) x5) =

i 82 . 92 L. 8 u_ “
(a11+5) ax% (022+€) ax% +b1 3 x, +b2 ax2+C (9)

Since v(x; xy) and L*(x; x,) can be obtained from
(7) and (10) respectively, every term in the Bellman
equation (8) except f*(x xy) is known. Thus if we
choose f“(x; x;) so as to satisfy the equation (8),
v(xy x;) become the exact solution of the Bellman
equation. Let #' be the optimal control and take
only two values.

w eU={uy, uy}
Assume

= uy for 0<xpy<i, and o' = 1wy for Kx,<b
(Fig. 1).
If the optimal control is #%;, the Bellman equation

becomes

Ly, )02y, %9) — £ (%1, 22)=0 for u;  (10)
and
L%y, 2)0(xy, x9) — £ (%1, x0)<0 for u,  (11)

Let g"(xy,x9) = L*(x;, x2)v(xy, x9).

Then for (11) and (12),

Fxr,%9) = & (31, x0),

F(xy, %) = g"(x1,%,) + ¢ for any £0.

For the case that U, is the optimal control,
f“(x;,x5) can be chosen similarly. As a consequence,
“(x,,%9) can now be determined explicitly using the
following expressions.

f"(x1,x2)=

&y, x9) if (x2<7 and u=1;) or (x> 1 and u=u,)
g, x)+ ¢ if (x5! and w=w;) or (x,<! and
U= uy)

V. Engineering example
With the construction of a test case, the Bellman
equation can be solved not only analytically but also
numerically. We take of and m{ in the following
form which represents simple nonlinear attitude
dynamics of a spacecraft[7].

0 0
o= ,
0 — op(sinx; + 7pxz)

X2

(12)

mi=

— sinx; + Isin (2x;) —ppx, + u
The following set 2 is taken as the domain of the
example.

2={(x1,x9) 1 —1<x<1, —1<{—xK1}
We take the following quadratic cost functional for
the test case.
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o) 006
](x,u)=Ex[f exp(— ) { Y7(s) Q¥(s) + rl’}ds
0 13)
+ exp{— e )} Y (e (#))SYz(u))] o005}
where
(vin(s) 00a}
Y(9)= l
(¥2)2(s) 5
Take Q=1I=S for simplicity. go.oe-
g 6x6
VI. Computational results 00
In this section, computational results for both of ' 8x8
the test case and the application problem are
presented and discussed. The following types of 001}
errors are introduced in order to measure per-
formance of the algorithm and also check correctness 0 . , ) ) ,
of the computational results. o 2 40 60 80 100
— — # of herations
Absolute error : Ej = mix|v,"— v;]
Relatove error E;’; — mix| Ui,r_ v,-"tll Fig. 3. Absolute error vs. # of iterations.
where v{? and v; represent the numerical solution at 0ga:
ny iteration and exact solution respectively.
Fig. 2 shows the property of contraction mapping, 008r
ie. rapid decrement of the relative error. Fig. 3 ooosl
shows that the absolute error remains constant after
certain number of iterations, which we «call the Goe4r
steady state error. This gap of error can be oozl
reduced if number of grid points taken for finite
difference approximation of the operator L*(x) is Eo,ce.
increased, and more terms are included in the Taylor §
series approximation of the operator. Table 1 shows oots
that error decreases as the number of grid points 0016t
increases. This is reasonable in terms of finite
difference approximation that more grid points yield 0014p
better solution. Fig. 4 show the effect of discount ootz
factor on the performance of the algorithm, namely
bigger discount factor gives smaller absolute error. 00t L ' ¢ : g
) ; . 0 20 40 60 80 100
Fig. 5 shows the map of optimal controls obtained #0f teratiors
3
or Fig. 4. Effect of discount factors.
113
1 11 1 11
J |68 1 1 1 1 1 1
1 1 1 1 11
g -1 -1 -1 -1 -1 -1
3_
% -1 -1 -1 -1 -1 -1
& -1 -1 -1 -1 -1 -1
2+
0 (1,0)
1r Fig. 5 Map of optimal controls for test case.
8x8
(6X6)
o . . . .
o 10 20 30 40 50 60 70 for the test case, which is exactly same as the a

# of erations

Fig. 2. Relative error vs. # of iterations.

priori map (refer Fig. 1). Fig. 6 shows the map of
optimal controls for the example problem. Based on
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“«0,1)
11 1)1 11
11 1)1 11
11 1 11 5
(-1,0) 111111 (1,0)
-1-1-1fF1-1-1
-1-1-1pF1-1-1
0-D

Fig. 6. Map of optimal controls for example pro-
blem.

the above discussions, we can conclude that the
algorithm gives correct solutions.

VII. Conclusions

In this paper, we obtained numerical solution of an
elliptic type Bellman equation arising from the
stochastic control problem. The Bellman equation of
elliptic type is solved by employing the finite
difference approximation and contraction mapping
method. A test case is constructed in order to solve
the Bellman equation not only numerically but also
analytically. Consequently, the numerical solution is
validated using the test case, i.e. by comparing errors
etc. Computational results of the test case show that
the algorithm yields reliable solutions. As a result of
computational solution, map of optimal controls are
obtained for both of the test case and example
problem.
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Table 1. Effect of number of grid points.

# of Grid Point

Steady State Error (absolute)

(1]

(2]

(3]

(4]

[5]

(6]

(7]

6X6 0.2236E-01
8X8 0.1831E-01
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