• Title/Summary/Keyword: stirrups

Search Result 228, Processing Time 0.022 seconds

Seismic behaviour of concrete columns with high-strength stirrups

  • Wang, Peng;Shi, Qingxuan;Wang, Feng;Wang, Qiuwei
    • Earthquakes and Structures
    • /
    • v.18 no.1
    • /
    • pp.15-25
    • /
    • 2020
  • The seismic behaviour of reinforced concrete (RC) columns made from high-strength materials was investigated experimentally. Six high-strength concrete specimen columns (1:4 scale), which included three with high-strength stirrups (HSSs) and three with normal-strength stirrups (NSSs), were tested under a combination of high axial and reversed cyclic loads. The effects of stirrup strength and the ratio of transverse reinforcement on the cracking patterns, hysteretic response, strength, stiffness, ductility, energy dissipation and strain of transverse reinforcement were studied. The results indicate that good seismic behaviour of an RC column subjected to high axial compression can be obtained by using a well-shaped stirrup. Stirrup strength had little effect on the lateral bearing capacity. However, the ductility was significantly modified by improving the stirrup strength. When loaded with a large lateral displacement, the strength reduction of NSS specimens was more severe than that of those with HSSs, and increasing the stirrup strength had little effect on the stiffness reduction. The ductility and energy dissipation of specimens with HSSs were superior to those with NSSs. When the ultimate displacement was reached, the core concrete could be effectively restrained by HSSs.

An Experimental Study on the Stirrup Effectiveness in Reinforced Concrete Beams (철근콘크리트보의 스터럽 효과에 관한 실험적 연구)

  • Lee, Young-Jae;Lee, Yoon-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.205-215
    • /
    • 2005
  • The main objective of this study is to investigate the behavior of NSC and HSC beams with stirrups. Main variables were the concrete compressive strength and amount of vertical stirrups. A total of 24 beams was tested; 4 beams without web reinforcement and 20 beams with web reinforcement in the form of vertical stirrups. Main variables were 2 different compressive strengths of concrete of 26.9MPa and 63.5MPa, 5 different spacing of stirrups of 200, 150, 120, 100 and 90mm. Therefore, the results were compared with the strengths predicted by the equations of ACI code 318-99 and other researchers. The shear reinforcement ratio, where the test beams were failed simultaneously under flexure and shear, were $0.63{\rho}_{vmax}$ for NSC beams and $0.53{\rho}_{vmax}$ for HSC beams, respectively. The ACI code equation was found to be very conservative for shear design.

GMDH-based prediction of shear strength of FRP-RC beams with and without stirrups

  • Kaveh, Ali;Bakhshpoori, Taha;Hamze-Ziabari, Seyed Mahmood
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.197-207
    • /
    • 2018
  • In the present study, group method of data handling networks (GMDH) are adopted and evaluated for shear strength prediction of both FRP-reinforced concrete members with and without stirrups. Input parameters considered for the GMDH are altogether 12 influential geometrical and mechanical parameters. Two available and very recently collected comprehensive datasets containing 112 and 175 data samples are used to develop new models for two cases with and without shear reinforcement, respectively. The proposed GMDH models are compared with several codes of practice. An artificial neural network (ANN) model and an ANFIS based model are also developed using the same databases to further assessment of GMDH. The accuracy of the developed models is evaluated by statistical error parameters. The results show that the GMDH outperforms other models and successfully can be used as a practical and effective tool for shear strength prediction of members without stirrups ($R^2=0.94$) and with stirrups ($R^2=0.95$). Furthermore, the relative importance and influence of input parameters in the prediction of shear capacity of reinforced concrete members are evaluated through parametric and sensitivity analyses.

Damage and stiffness research on steel shape steel fiber reinforced concrete composite beams

  • Xu, Chao;Wu, Kai;Cao, Ping zhou;Lin, Shi qi;Xu, Teng fei
    • Computers and Concrete
    • /
    • v.24 no.6
    • /
    • pp.513-525
    • /
    • 2019
  • In this work, an experimental research has been performed on Steel Fiber-Steel Reinforced Concrete (SFSRC)specimens subjected to four-point bending tests to evaluate the feasibility of mutual replacement of steel fibers and conventional reinforcement through studying failure modes, load-deflection curves, stiffness of characteristic points, stiffness degradation curves and damage analysis. The variables considered in this experiment included steel fiber volume percentage with and without conventional reinforcements (stirrups or steel fibers) with shear span depth ratios of S/D=2.5 and 3.5. Experimental results revealed that increasing the volume percentage of steel fiber decreased the creation and propagation of shear and bond cracks, just like shortening the stirrups spacing. Higher crack resistance and suturing ability of steel fiber can improve the stability of its bearing capacity. Both steel fibers and stirrups improved the stiffness and damage resistance of specimens where stirrups played an essential role and therefore, the influence of steel fibers was greatly weakened. Increasing S/D ratio also weakened the effect of steel fibers. An equation was derived to calculate the bending stiffness of SFSRC specimens, which was used to determine mid span deflection; the accuracy of the proposed equation was proved by comparing predicted and experimental results.

Experimental investigation on shear capacity of RC beams with GFRP rebar & stirrups

  • Vora, Tarak P.;Shah, Bharat J.
    • Steel and Composite Structures
    • /
    • v.21 no.6
    • /
    • pp.1265-1285
    • /
    • 2016
  • This paper presents experimental results of advanced investigation carried out on the beams reinforced with Glass Fiber Reinforced Polymer (GFRP) rebar and stirrups. Twelve beams reinforced with GFRP and one beam with steel reinforcement of size $230{\times}300{\times}2000mm$ were investigated. Longitudinal reinforcement, shear span and spacing of stirrups were the main variables to form the set. In advanced testing three types of strain gauges for steel, composite and concrete surface were applied to observe strain/stress development against the applied load. Live data were recorded from four strain gauges applied on stirrups, one at center on longitudinal reinforcement, two on the concrete surface and central deflection during the test. Although the focus of the paper was mainly on the behavior of GFRP shear reinforcement, other parallel data were observed for the completeness of the test. Design recommendations of ISIS Canada Design Manual (2007), Japan Society of Civil Engineers (1997) and American Concrete Institute (ACI-440.1R-06) were reviewed. Shear design predictions were compared with experimental results in which it was observed that all the three standards provided conservative predictions. However, ACI found most efficient compare to other two there is room to improve the efficiency of the recommendations.

Investigation into shear properties of medium strength reinforced concrete beams

  • Shah, Attaullah;Ahmad, Saeed;Khan, Salimullah
    • Structural Engineering and Mechanics
    • /
    • v.35 no.3
    • /
    • pp.265-282
    • /
    • 2010
  • The shear contribution of transverse steel in reinforced concrete beams is generally assumed as independent of the concrete strength by most of the building codes. The shear strength of RC beams with web reinforcement is worked out by adding the individual contributions of concrete and stirrups. In this research 70 beams of medium strength concrete in the range of 52-54 MPa, compressive strength were tested in two sets of 35 beams each. In one set of 35 beams no web reinforcement was used, whereas in second set of 35 beams web reinforcement was used to check the contribution of stirrups. The values have also been compared with the provisions of ACI, Eurocode and Japanese Code building codes. The results of two sets of beams, when compared mutually and provisions of the building codes, showed that the shear strength of beams has been increased with the addition of stirrups for all the beams, but the increase is non uniform and irregular. The comparison of observed values with the provisions of selected codes has shown that EC-02 is relatively less conservative for low values of longitudinal steel, whereas ACI-318 overestimates the shear strength of RC beams at higher values of longitudinal steel. The Japanese code of JSCE has given relatively good results for the beams studied.

Parametric study of shear capacity of beams having GFRP reinforcement

  • Vora, Tarak P.;Shah, Bharat J.
    • Advances in concrete construction
    • /
    • v.13 no.2
    • /
    • pp.183-190
    • /
    • 2022
  • A wide range of experimental bases and improved performance with different forms of Fiber Reinforced Polymer (FRP) have attracted researchers to produce eco-friendly and sustainable structures. The reinforced concrete (RC) beam's shear capacity has remained a complex phenomenon because of various parameters affecting. Design recommendations for the shear capacity of RC elements having FRP reinforcement need a more experimental database to improve design recommendations because almost all the recommendations replace different parameters with FRP's. Steel and FRP are fundamentally different materials. One is ductile and isotropic, whereas the other is brittle and orthotropic. This paper presents experimental results of the investigation on the beams with glass fiber reinforced polymer (GFRP) reinforcement as longitudinal bars and stirrups. Total twelve beams with GFRP reinforcement were prepared and tested. The cross-section of the beams was rectangular of size 230 × 300 mm, and the total length was 2000 mm with a span of 1800 mm. The beams are designed for simply-supported conditions with the two-point load as per specified load positions for different beams. Flexural reinforcement provided is for the balanced conditions as the beams were supposed to test for shear. Two main variables, such as shear span and spacing of stirrups, were incorporated. The beams were designed as per American Concrete Institute (ACI) ACI 440.1R-15. Relation of VExp./VPred. is derived with axial stiffness, span to depth ratio, and stirrups spacing, from which it is observed that current design provisions provide overestimation, particularly at lower stirrups spacing.

Kinematic Analysis of The Rider Postural Alignments According to The Fitting of Stirrups Lengths during Horse Walk of High Level Rider (승마 평보 시 숙련자의 등자길이 피팅에 따른 기승자세정열의 운동학적 비교분석)

  • Ryew, Che-Cheong;Hyun, Seung-Hyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.4
    • /
    • pp.329-338
    • /
    • 2014
  • The purpose of this study was to analyze of the rider postural alignments according to the fitting of stirrups lengths during walk of high level riders. Participants selected as subject were consisted of horse riders of high level (age: $47.66{\pm}3.51yrs$, height: $168.40{\pm}4.84cm$, body weight: $73.36{\pm}15.58kg$, low extremity length: $94.76{\pm}3.98cm$, career: $23.33{\pm}5.77yrs$) and walk with 3 types of stirrup lengths(ratio of low extremity 68.04%, 73.25%, 78.48%). The variables analyzed were consisted of the displacement of Y axis (center of mass, head, thigh, shank and foot), FR angle, LR angle, dynamic postural stability index (DPSI), coefficient of variation (CV%), and distance (X axis) of low extremity limb between right and left. The displacement of Y axis in COM, thigh, shank, foot limbs were not statistically significant, but movements of head showed greater distance of B type and C type than that of A type during 1 stride of walk. The FR and LR angle in trunk of horse rider, dynamic postural stability index and, coefficient of variation didn't show significant difference statistically according to the fitting of stirrup lengths. Also the distance (X axis) of low extremity in thigh and shank didn't show significant difference statistically in between right and left, but right and left foot showed greater distance in C type than that of B and A types during walk in horse back riding. The hip and ankle joint angle not statistically significant according to stirrups lengths, But knee joint angle showed more extended according to the increase of stirrups lengths during stance and swing phase in walk.

Shear Strength of Steel Fiber Reinforced Concrete Beams without Stirrups (전단보강이 없는 강섬유보강 콘크리트보의 전단강도)

  • 구성모;이정석;김우석;백승민;곽윤근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.591-596
    • /
    • 2001
  • Nine steel fiber reinforced high strength concrete beams and three steel fiber reinforced normal strength concrete beams without stirrups were tested by two point load. The variables studied in this investigation are the shear span/depth ratios of a/d = 2, 3 and 4, steel fiber volume fractions of V$_{f}$ : 0, 0.5% and 0.75% and concrete compressive strengths of f$_{ck}$: 630kgf/$cm^{2}$, and 310kgf/$cm^{2}$. Based on these tests and on tests by previous investigators, predictive equation is proposed for evaluating the ultimate shear strength of steel fiber reinforced concrete beams without stirrups. The proposed equation gave good prediction for the ultimate shear strength of the tested beams.

  • PDF

Shear Behavior of High and Low Strength Reinforced Concrete Beams with Web Reinforcement (전단철근이 있는 고강도와 보통강도 철근콘크리트보의 전단거동에 관한 실험적 연구)

  • 이영재;최정우;박찬규;신길윤;서원명
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.331-338
    • /
    • 1995
  • Results of an experimental of the shear and flexures strength of doubly reinforced concrete beams were summarized. A total of 24 beams was tested; 4 without web reinforcement and 20 with web reinforcement in the form of vertical stirrups. Main variables were compressive strength of concrete which was 26.88MPa and 63.4MPa, spacing of stirrups which was no-stirrups, 200, 150, 120, 100 and 90mm. Tests results were compared with stength predicted using the equations of ACI 318-89. The shear reinforcement ratio of the beams, which failed simultaneously under both flexures and shear, were 0.66pvmax for low strength concrete beams and 0.56pvmax for high strength concrete beams, respectively. Thus, ACI equations for shear reinforcement were very conservative.

  • PDF