• Title/Summary/Keyword: stiffnesses

Search Result 231, Processing Time 0.023 seconds

Dynamic behaviour of semi-rigid jointed cold-formed steel hollow frames

  • Joanna, P.S.;Samuel Knight, G.M.;Rajaraman, A.
    • Steel and Composite Structures
    • /
    • v.6 no.6
    • /
    • pp.513-529
    • /
    • 2006
  • This paper deals with the dynamic behaviour of cold-formed steel hollow frames with different connection stiffnesses. An analytical model of a semi-rigid frame was developed to study the influence of connection stiffnesses on the fundamental frequency and dynamic response of the frames. The flexibilities of the connections are modeled by rotational springs. Neglect of semi-rigidity leads to an artificial stiffening of frames resulting in shorter fundamental period, which in turn results in a significant error in the evaluation of dynamic loads. In the seismic design of structures, of all the principal modes, the fundamental mode of translational vibration is the most critical. Hence, experiments were conducted to study the influence of the connection stiffnesses on the fundamental mode of translational vibration of the steel hollow frames. From the experimental study it was found that the fundamental frequency of the frames lie in the semi-rigid region. From the theoretical investigation it was found that the flexibly connected frames subjected to lateral loads exhibit larger deflection as compared to rigidly connected frames.

Optimal Stiffness Design of Joint Structures of a Vehicle for Vibration

  • Lee, Sang-Beom
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.1E
    • /
    • pp.66-69
    • /
    • 1998
  • Idle shake vibration characteristics of a vehicle are mainly influenced not only by the stiffnesses of the beam type structures such as pillars and rockers, but also by the stiffnesses of the joint structures, at which several beam structures are jointed together. In the early design stage of the car body structure a simple FE model has been used, in which joints are modeled as linear springs to represent the stiffnesses of the joint structures. In this paper a new modeling technique for the joint structure is presented using an equivalent beam, instead of using a spring. The modeling technique proposed is utilized to design optimal joint structures that meet the required vibration performance of the total vehicle structure.

  • PDF

A Study on Numerical Approximation of Joint Stiffness of Vehicle Structures (차체 구조물 결합부 강성의 근사적 수식화에 관한 연구)

  • 박정률;이상범;임홍재
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.155-163
    • /
    • 2001
  • Joint stiffnesses can affect the vibrational characteristics of car body structures and, therefore, should be included in vehicle system models. In this paper, a numerical approximation of joint stiffness is presented for considering joint flexibility of thin walled beam jointed structures. Using the proposed method, it is possible to optimize joint structures considering the change of section shapes in vehicle structures. The numerical approximation of joint stiffnesses is derived using the RSM(Response Surface Method) in terms of beam section properties. The study shows that joint stiffnesses can be effectively determined in designing vehicle structure.

  • PDF

A study on the Stiffness for a Radial Magnetic Bearing (반경방향 자기베어링의 강성에 관한 연구)

  • 김재실;안승국;이재환;안대균;최헌오
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.325-332
    • /
    • 2002
  • This article describes (1) 2 and 3 dimensional electromagnetic finite element models for an active heteropolar radial magnetic bearing, (2) the procedure for obtaining the bearing stiffnesses by simulating the models and (3) the reviews of the models by comparing an experimental test to the ideal closed loop analysis with the stiffnesses calculated from (2). The 3 dimensional model for the magnetic bearing may be very effectively applied to several types of magnetic bearings.

  • PDF

Effective Stiffness of Horizontal Joints in Precast Concrete Large Panel Structures (프리캐스트 콘크리트 대형판구조물의 수평접합부 유효강성)

  • 장극관;이한선;신영식;류진호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.278-283
    • /
    • 1993
  • Though stiffnesses of joints in precast concrete (P.C) large structures are known to be generally less than those in monolithic reinforced concrete wall structures, designers have very little information on the quantitative values with regards to these stiffnesses. The aim of this paper is to provide this quantitative information, in particular, on the compressive stiffness of horizontal joints, based on the analytical results derived from several experiments. Also, it is shown that the approach from the contact problem to determine this stiffness gives a value very similar to those obtained above.

  • PDF

A Study on the Analysis and Application for stiffness of Corrugated Plate (주름판구조물의 강성계수 해석 및 응용에 관한 연구)

  • Chung, Kang;Chung, Suk-Choo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.1
    • /
    • pp.50-62
    • /
    • 1991
  • In this study, the bending and twisting stiffnesses of corrugated plate are analyzed by applying equivalent idea. And the natural frequencies as an application example of the stiffnesses are analyzed by considering corrugated plate as orthotropic plate. The validity of analytic results is examined by comparing with experimental results by fast Fourier transformation analyzer.

  • PDF

Study on the Frictional Characteristics of Micro-particles for Tribological Application (미세입자의 트라이볼로지적 응용을 위한 마찰특성 고찰)

  • Sung, In-Ha;Han, Hung-Gu;Kong, Ho-Sung
    • Tribology and Lubricants
    • /
    • v.25 no.2
    • /
    • pp.81-85
    • /
    • 2009
  • Interests in micro/nano-particles have been greatly increasing due to their wide applications in various fields such as environmental and medical sciences as well as engineering. In order to obtain a fundamental understanding of the tribological characteristics at particle-surface contact interface, frictional behaviors according to load/pressure and materials were obtained by using atomic force microscope(AFM) cantilevers with different stiffnesses and tips. Lateral contact stiffnesses were observed in various tip-surface contact situations. Experimental results show that stick-slip friction behavior occurs even when the colloidal probes with a particle of a few micrometers in diameter, which have a relatively large contact area and lack a well-shaped apex, were used. This indicates that atomic stick-slip friction may be a more common phenomenon than it is currently thought to be. Also, experimental results were investigated by considering the competition between the stiffness of the interatomic potential across the interface and the elastic stiffnesses of the contacting materials and the force sensor itself.

Study on Seismic Response of Wall-Slab Apartment Building Sturucture Considering the Stiffnesses of a Foundation-Soil System (기초지반강성을 고려한 벽식구조 아파트의 지진응답에 관한 연구)

  • 김지원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.167-175
    • /
    • 2000
  • Seismic analyses of structures can`t be performed without considering the effect of soil-structure interaction and seismic responses of a structure taking into account the stiffnesses of a foundation-soil system show a significant difference from those with a rigid base. However, current seismic analyses of apartment building structures were carried out assuming a rigid base and ignoring the characteristics of a foundation and the properties of the underlying soil. In this study, seismic analyses of apartment buildings of a particular wall-slab structural type were carried out comparing seismic response spectra of a flexible base with those of a rigid base and UBC-97. Wall-slab type low-rise or mid-height apartment buildings built on the deep soil layer showed a rigid body motion with the reduced seismic responses due to the base isolation effect, indicating that it is too safe but uneconomical to utilize the design spectra of UBC-97 for the seismic analysis of a wall-slab type apartment buildings due to the too conservative design.

  • PDF

Lateral Buckling Analysis of Open Section Composite Laminated Beam Under End-Moment (단모멘트를 받는 개단면 박벽 복합재 보의 횡좌굴 해석)

  • 김만호;신동구
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.51-58
    • /
    • 2000
  • Lateral buckling behavior of laminated composite thin-walled I-section beams subjected to bending moment is investigated by applying the nonlinear anisotropic thin-walled beam theory. The constituent laminated thin-walled elements of I-section are assumed to be symmetrically laminated. The bending, twisting, and warping stiffnesses of the cross section are obtained based on the definitions of these stiffnesses In the thin-walled anisotropic beam theory In numerical examples, singly-symmetric I-beams with specially orthotropic, quasi-isotropic, angle-plys and various boundary conditions are considered. To validate the proposed theoretical approach, present analytical solutions are compared with three dimensional finite element solutions.

  • PDF

A Theoretical Model for Predicting Matrix Crack Density Growth (기지균열의 밀도증가를 예측하기 위한 이론적 모형)

  • 이종원;김진원;김응태;안석민
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.203-206
    • /
    • 2002
  • The present study proposes a theoretical model for predicting the matrix crack density growth of each layer in composite laminates subjected to thermo-mechanical loads. Each layer with matrix cracks is treated as an equivalent continuum of degraded elastic stiffnesses which are functions of the matrix crack density in each slyer. The energy release rate as a function of the degraded elastic stiffnesses is then calculated for each layer as functions of thermo-mechanical loads externally applied to the laminate. The matrix crack densities of each layer in general laminates are predicted as functions of the thermo-mechanical loads applied to a number of laminates. Comparisons of the present study with experimental data in the open literatures are also provided.

  • PDF