• 제목/요약/키워드: stiffness optimization

검색결과 519건 처리시간 0.029초

유체-구조 연성 문제의 형상 최적설계 (Shape Design Optimization of Fluid-Structure Interaction Problems)

  • 하윤도;김민근;조현규;조선호
    • 대한조선학회논문집
    • /
    • 제44권2호
    • /
    • pp.130-138
    • /
    • 2007
  • A coupled variational equation for fluid-structure interaction (FSI) problems is derived from a steady state Navier-Stokes equation for incompressible Newtonian fluid and an equilibrium equation for geometrically nonlinear structures. For a fully coupled FSI formulation, between fluid and structures, a traction continuity condition is considered at interfaces where a no-slip condition is imposed. Under total Lagrange formulation in the structural domain, finite rotations are well described by using the second Piola-Kirchhoff stress and Green-Lagrange strain tensors. An adjoint shape design sensitivity analysis (DSA) method based on material derivative approach is applied to the FSI problem to develop a shape design optimization method. Demonstrating some numerical examples, the accuracy and efficiency of the developed DSA method is verified in comparison with finite difference sensitivity. Also, for the FSI problems, a shape design optimization is performed to obtain a maximal stiffness structure satisfying an allowable volume constraint.

Topological optimization procedure considering nonlinear material behavior for reinforced concrete designs

  • Franca, Marcela Bruna Braga;Greco, Marcelo;Lanes, Ricardo Morais;Almeida, Valerio Silva
    • Computers and Concrete
    • /
    • 제17권1호
    • /
    • pp.141-156
    • /
    • 2016
  • The search for new structural systems capable of associating performance and safety requires deeper knowledge regarding the mechanical behavior of structures subject to different loading conditions. The Strut-and-Tie Model is commonly used to structurally designing some reinforced concrete elements and for the regions where geometrical modifications and stress concentrations are observed, called "regions D". This method allows a better structural behavior representation for strength mechanisms in the concrete structures. Nonetheless, the topological model choice depends on the designer's experience regarding compatibility between internal flux of loads, geometry and boundary/initial conditions. Thus, there is some difficulty in its applications, once the model conception presents some uncertainty. In this context, the present work aims to apply the Strut-and-Tie Model to nonlinear structural elements together with a topological optimization method. The topological optimization method adopted considers the progressive stiffness reduction of finite elements with low stress values. The analyses performed could help the structural designer to better understand structural conceptions, guaranteeing the safety and the reliability in the solution of complex problems involving structural concrete.

테이퍼드 다이아그리드 초고층 구조물의 형상 최적설계기법 개발 (A Development of a Shape Optimization Design Techniques for the Diagrid Tapered Tall-Building)

  • 한상을;이한주;유종혜;정소영
    • 한국강구조학회 논문집
    • /
    • 제23권3호
    • /
    • pp.349-356
    • /
    • 2011
  • 본 논문에서는 파라메트릭 기법을 이용한 최적설계 알고리즘을 사용하여 최근 들어 다양한 형태를 지니고 있는 비정형 초고층 구조물의 최적 다이아그리드 각도를 찾는 것에 대해 연구하였다. 다이아그리드는 비정형 초고층 구조물을 구성하는 대각방향의 부재로 수직하중과 수평하중에 대해 효과적으로 대응할 수 있는 구조 시스템으로써 다이아그리드의 각도를 최적화 하여 비정형 초고층 구조물의 최대강성을 찾는 것에 목적을 두었다. 본 연구에서 검증예제로 비정형 형상인 원통형 구조물과 테이퍼드 원형 구조물에 다이아그리드 최적설계 알고리즘을 적용하여 변위를 효과적으로 제어하는 다이아그리드의 최적각도를 검토하였다.

Weight and topology optimization of outrigger-braced tall steel structures subjected to the wind loading using GA

  • Nouri, Farshid;Ashtari, Payam
    • Wind and Structures
    • /
    • 제20권4호
    • /
    • pp.489-508
    • /
    • 2015
  • In this paper, a novel methodology is proposed to obtain optimum location of outriggers. The method utilizes genetic algorithm (GA) for shape and size optimization of outrigger-braced tall structures. In spite of previous studies (simplified methods), current study is based on exact modeling of the structure in a computer program developed on Matlab in conjunction with OpenSees. In addition to that, exact wind loading distribution is calculated in accordance with ASCE 7-10. This is novel since in previous studies wind loading distributions were assumed to be uniform or triangular. Also, a new penalty coefficient is proposed which is suitable for optimization of tall buildings. Newly proposed penalty coefficient improves the performance of GA and results in a faster convergence. Optimum location and number of outriggers is investigated. Also, contribution of factors like central core and outrigger rigidity is assessed by analyzing several design examples. According to the results of analysis, exact wind load distribution and modeling of all structural elements, yields optimum designs which are in contrast of simplified methods results. For taller frames significant increase of wind pressure changes the optimum location of outriggers obtained by simplified methods. Ratio of optimum location to the height of the structure for minimizing weight and satisfying serviceability constraints is not a fixed value. Ratio highly depends on height of the structure, core and outriggers stiffness and lateral wind loading distribution.

Multiphase material topology optimization of Mindlin-Reissner plate with nonlinear variable thickness and Winkler foundation

  • Banh, Thanh T.;Nguyen, Xuan Q.;Herrmann, Michael;Filippou, Filip C.;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • 제35권1호
    • /
    • pp.129-145
    • /
    • 2020
  • In typical, structural topology optimization plays a significant role to both increase stiffness and save mass of structures in the resulting design. This study contributes to a new numerical approach of topologically optimal design of Mindlin-Reissner plates considering Winkler foundation and mathematical formulations of multi-directional variable thickness of the plate by using multi-materials. While achieving optimal multi-material topologies of the plate with multi-directional variable thickness, the weight information of structures in terms of effective utilization of the material at the appropriate thickness location may be provided for engineers and designers of structures. Besides, numerical techniques of the well-established mixed interpolation of tensorial components 4 element (MITC4) is utilized to overcome a well-known shear locking problem occurring to thin plate models. The well-founded mathematical formulation of topology optimization problem with variable thickness Mindlin-Reissner plate structures by using multiple materials is derived in detail as one of main achievements of this article. Numerical examples verify that variable thickness Mindlin-Reissner plates on Winkler foundation have a significant effect on topologically optimal multi-material design results.

전달함수 다중합성법을 이용한 진동시스템의 결합부 특성값 동정 (Identification of Dynamic Joint Characteristics Using a Multi-domain FRF- based Substructuring Method)

  • 이두호;황우석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.635-644
    • /
    • 2004
  • A method of identifying structural parameters such as stiffness and damping coefficients at interfacial points of vibro-acoustic systems is suggested using an optimization technique. To identify the parameters using a numerical optimization algorithm, cost functions are defined. The cost function should be zero at the correct parameter values. To minimize the cost functions using an optimization technique, a design sensitivity analysis procedure is developed in the framework of the multi-domain FRF-based substructuring method. As a numerical example, a ladder-like structure problem is introduced. With known parameter values and different initial guesses of the parameters, convergence characteristics to the exact value are compared f3r the three cost functions. Investigating the contours of the cost functions, we find the first cost function has the largest convergent region to the correct value. As another practical problem, stiffnesses of engine mounts and bushings in a passenger car are identified. The numerical examples show that the proposed method is efficient and accurate far realistic problems.

  • PDF

전달함수 다중합성법을 이용한 진동시스템의 결합부 특성값 추정 (Identification of Dynamic Joint Characteristics Using a Multi-domain FRF-based Substructuring Method)

  • 황우석;이두호
    • 한국소음진동공학회논문집
    • /
    • 제14권6호
    • /
    • pp.536-545
    • /
    • 2004
  • A method of identifying structural parameters such as stiffness and damping coefficients at interfacial points of vibro-acoustic systems is suggested using an optimization technique. To identify the parameters using a numerical optimization algorithm, cost functions are defined. The cost function should be zero at the correct parameter values. To minimize the cost functions using an optimization technique, a design sensitivity analysis procedure is developed in the framework of the multi-domain FRF-based substructuring method. As a numerical example, a ladder-like structure problem is introduced. With known parameter values and different initial guesses of the parameters, convergence characteristics to the exact value are compared for the three cost functions. Investigating the contours of the cost functions, we find the first cost function has the largest convergent region to the correct value. As another practical problem, the stiffnesses of engine mounts and bushings in a passenger car are identified. The numerical examples show that the proposed method is efficient and accurate for realistic problems.

위상최적설계를 이용한 차체 점용접 배치 최적화 연구 (A Study on Optimal Spot-weld Layout Design of the Car Body Structure Using Topology Optimization)

  • 김성래;이채욱;김문영;김찬묵;임홍재
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.361-366
    • /
    • 2012
  • In this paper, we propose the efficient technique that reduces the number of spot-welds and increases the structural rigidity by using the topology optimization technique. Eigen value analysis is used to evaluate the rigidity of the optimized model. As a first step, the topology optimization is performed to find optimal spot-weld distributions. In this study, the design objective is to maximize the weighted frequencies. The volume fractions of the weld components are used as design constraints, and also the densities of each element in the individual design space are used as design variables. And then, to consider the possibility of spot-weld failure, the contribution rate analysis was performed by using the orthogonal array method of DOE. The spot-welds in the rear panel part are reinforced according to estimation results of the contribution rate analysis. Finally, we obtained optimized spot-weld layout model which has the reduced number of spot-welds and the improved dynamic stiffness.

  • PDF

전륜구동형 승용차의 엔진마운트 시스템 최적설계 (An Optimal Design of the Front Wheel Drive Engine Mount System)

  • 김민수;김한성;최동훈
    • 한국자동차공학회논문집
    • /
    • 제1권3호
    • /
    • pp.74-82
    • /
    • 1993
  • Optimal designs of a 3-point and a 4-point engine mount system are presented for reducing the idle shake of a Front Wheel Drive(FWD) vehicle. Design variables used in this study are the locations, the angles and the stiffness of an engine mount system. The goal of the optimization is minimizing the transmitted force without violating the constraints such as static weight sag, resonant frequency and side limits of design variables. The Augmented Lagrange Multiplier(ALM) Method is used for solving the nonlinear constrained optimization. The generalized Jacobi and the impedence method are employed for a free vibration analysis and a forced response analysis. The trend of analysis results well meet that of the experimental results. The optimization results reveal that the 4-point system transmits less torque than the 3-point system. It is also found from the design sensitivity analysis that the vibration characteristics of the 4-point system is less sensitive than those of the 3-point system.

  • PDF

기술논문 : 연성하중해석을 이용한 구조 최적화 기법 연구 (Technical Papers : Optimization Method of Structure by Using Coupled Load Analysis)

  • 이영신;김인걸;황도순
    • 한국항공우주학회지
    • /
    • 제30권1호
    • /
    • pp.132-138
    • /
    • 2002
  • 오늘날 여러 가지 측면에서 전략적으로 고성능의 위성 본체를 개발하는 것은 매우 중요하다. 본 연구에서는 부분구조합성법의 하나인 구속모드법을 이용한 연성하중해석 기법 및 모달 과도해석법을 사용하여 위성체 구조부재에 대한 최적화를 수행하였다. 제안된 방법은 초기 설계시, 일반적으로 사용되고 있는 준정적 하중을 이용하지 않고, 동종의 발사체에 대해 유사한 위성과의 연성하중해석 자료를 이용함으로써, 각 구조부재에 대해 보다 정확한 결과를 얻을 수 있는 장점이 있다. 예제를 통해 제안된 기법이 초기단계의 위성체 구조 부재의 효율적인 최적설계 및 중량 감소를 위해 적용될 수 있음을 확인하였다.