Browse > Article
http://dx.doi.org/10.12989/cac.2016.17.1.141

Topological optimization procedure considering nonlinear material behavior for reinforced concrete designs  

Franca, Marcela Bruna Braga (PROPEEs-Programa de Pos-Graduacao em Engenharia de Estruturas da UFMG, Departamento de Engenharia de Estruturas, Universidade Federal de Minas Gerais)
Greco, Marcelo (PROPEEs-Programa de Pos-Graduacao em Engenharia de Estruturas da UFMG, Departamento de Engenharia de Estruturas, Universidade Federal de Minas Gerais)
Lanes, Ricardo Morais (PROPEEs-Programa de Pos-Graduacao em Engenharia de Estruturas da UFMG, Departamento de Engenharia de Estruturas, Universidade Federal de Minas Gerais)
Almeida, Valerio Silva (EPUSP, Departamento de Engenharia de Estruturas e Fundacao da Escola Politecnica, Universidade de Sao Paulo)
Publication Information
Computers and Concrete / v.17, no.1, 2016 , pp. 141-156 More about this Journal
Abstract
The search for new structural systems capable of associating performance and safety requires deeper knowledge regarding the mechanical behavior of structures subject to different loading conditions. The Strut-and-Tie Model is commonly used to structurally designing some reinforced concrete elements and for the regions where geometrical modifications and stress concentrations are observed, called "regions D". This method allows a better structural behavior representation for strength mechanisms in the concrete structures. Nonetheless, the topological model choice depends on the designer's experience regarding compatibility between internal flux of loads, geometry and boundary/initial conditions. Thus, there is some difficulty in its applications, once the model conception presents some uncertainty. In this context, the present work aims to apply the Strut-and-Tie Model to nonlinear structural elements together with a topological optimization method. The topological optimization method adopted considers the progressive stiffness reduction of finite elements with low stress values. The analyses performed could help the structural designer to better understand structural conceptions, guaranteeing the safety and the reliability in the solution of complex problems involving structural concrete.
Keywords
reinforced concrete; strut-and-tie; Abaqus; FEM; topological optimization;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Abaqus (2010), Abaqus analysis user's manual, Version 6.10, Dassault Systemes.
2 Almeida, V., Simonetti, H.L. and Neto, L.O. (2013a), "Comparative analysis of strut-and-tie models using smooth evolutionary structural optimization", Eng. Struct., 56, 1665-1675.   DOI
3 Almeida, V.S., Simonetti, H.L. and Neto, L.O. (2013b), "Truss-and-tie model analyses for concrete structures using a numerical tecnique", Revista Ibracon de Estruturas e Materials, 6(1), 139-157.   DOI
4 ACI 318 (1995), Building Code Requeriments for Structural Concrete, American Concrete Institute, Detroit.
5 ACI 318(2005), Building Code Requirements for Structural Concrete and Commentary, APPENDIX A: Strut-and-Tie Models, American Concrete Institute, Detroit.
6 Bendsoe, M.P. and Kikuchi, N. (1988), "Generating optimal topologies in structural design using a homogenization method", Comput. Method. Appl. M., 71(2), 197-224.   DOI
7 CSA Standard-A23.3 (2004), Design of Concrete Structures, Canadian Standards Association Ontario, Rexdale.
8 Chen, W.F. and Han, D.J. (1988), Plasticity for Structural Engineers, Springer-Verlag, New York, USA.
9 Chetchotisak, P., Teerawong, J., Yindeesuk, S. and Song, J. (2014), "New Strut-and-Tie-Models for shear strength prediction and design of RC deep beams", Comput. Concrete, 14(5), 807-831.
10 Cheng, T.K. and Olhoff, N. (1982), "Regularized formulation for optimal design of axisymmetric plates", Int. J. Solid. Struct., 18(2), 153-169.   DOI
11 Eurocode 2 (2002), Design of Concrete Structures, General Rules and Rules for Buildings.
12 CEB - FIB (2010), Model Code for Concrete Structures, Federation Internationale du Beton, 2.
13 EHE (2008), Instruccion de Hormigon Estructural, Ministerio de la Presidencia. (in spanish)
14 Garber, D.B., Gallardo, J.M., Huaco, G.D., Samaras, V.A. and Breen, J.E. (2014), "Experimental evaluation of Strut-and-Tie Model of indeterminate deep beam", ACI Struct. J., 111(4), 873 -873.
15 Kmiecik, P. and Kaminski, M. (2011), "Modelling of reinforced concrete structures and composite structures with concrete strength degradation taken into consideration", Arch. Civil Mech. Eng., 11(3), 623-636.   DOI
16 Liang, Q.Q., Xie, Y.M. and Steven, G.P. (2000), "Topology optimization of strut-and-tie models in reinforced concrete structures using an evolutionary procedure", ACI Struct. J., 97(2), 322-330.
17 Kohn, R.V. and Strang, G. (1986), "Optimal-design and relaxation of variational problems", Commun. Pur Appl. Math., 39(1), 112-137.
18 Lanes, R.M. and Greco, M. (2013), "Application of a topological evolutionary optimization method developed through Python script", Sci. Eng. J., 22, 1-11. (in Portuguese)
19 Lee, J. and Fenves, G.L. (1998), "Plastic-damage model for cyclic loading of concrete structures", J. Eng. Mech., 124(8), 892-900.   DOI
20 Liang, Q.Q., Uy, B. and Steven, G.P. (2002), "Performance-based optimization for Strut-Tie Modeling of structural concrete", J. Struct. Eng., 128(6), 815-823.   DOI
21 Lubliner J., Oliver J., Oller, S. and Onate, E. (1989), "A plastic-damage model for concrete", Int. J. Solid. Struct., 25(3), 299-329.   DOI
22 Najafian, H.A. and Vollum, R.L. (2013), "Design of planar reinforced concrete D regions with nonlinear finite element analysis", Eng. Struct., 51, 211-225.   DOI
23 Olhoff, N., Bendsoe, M.P. and Rasmussen, J. (1991), "On CAD-integrated structural topology and design optimization", Comput. Meth. Appl. M., 89(1), 259-279.   DOI
24 Rozvany, G.I.N., Olhoff, N., Cheng, K. and Taylor, J.E. (1982), "On the solid plate paradox in structural Optimization", J. Struct. Mech., 10(1), 1-32.   DOI
25 Schafer, K. and Schlaich, J. (1991), "Design and detailing of structural concrete using strut-and-tie models", Struct. Eng., 69(6), 113-125.
26 Xie, Y.M. and Steven, G.P. (1993), "A simple evolutionary procedure for structural optimization", Comput. Struct., 49(5), 885-896.   DOI
27 Schlaich, J, Schafer, K. and Jennewein, M. (1987), "Toward a consistent design of structural concrete", PCI J., 32(3), 74-150.   DOI
28 Shah, A., Haq, E. and Khan, S. (2011), "Analysis and design of disturbed regions in concrete structures", Procedia Eng., 14, 3317-3324.   DOI
29 Wight, J.K. and MacGregor, J.G. (2012), Reinforced Concrete Mechanics and Design, Prentice-Hall International, 3rd Edition., London, England.
30 Zhang, H.Z., Liu, X. and Yi, W.J. (2014), "Reinforcement layout optimization of RC d-regions", Adv. Struct. Eng., 17(7), 979-992.   DOI