• Title/Summary/Keyword: stiffness of joint

Search Result 825, Processing Time 0.036 seconds

Experimental Verification of Variable Radius Model and Stiffness Model for Twisted String Actuators (TSAs) (줄 꼬임 구동기의 가변 반지름 모델과 강성 모델에 대한 실험적 검증)

  • Park, Jihyuk;Kim, Kyung-Soo;Kim, Soohyun
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.4
    • /
    • pp.419-424
    • /
    • 2017
  • Twisted string actuators (TSAs) are tendon-driven actuators that provide high transmission ratios. Twisting a string reduces the length of the string and generates a linear motion of the actuators. In particular, TSAs have characteristic properties (compliance) that are advantageous for operations that need to interact with the external environment. This compliance has the advantage of being robust to disturbance in force control, but it is disadvantageous for precise control because the modeling is inaccurate. In fact, many previous studies have covered the TSA model, but the model is still inadequate to be applied to actual robot control. In this paper, we introduce a modified variable radius model of TASs and experimentally demonstrate that the modified variable radius model is correct compared to the conventional variable radius string model. In addition, the elastic characteristics of the TSAs are discussed along with the experimental results.

An Experimental Study on Comparison of Structural Behavior of PT Flat Plate and RC Flat Plate Interior Connections (PT 플랫 플레이트와 RC 플랫 플레이트 내부 접합부의 구조적 거동 비교에 관한 실험적 연구)

  • Lee Dong Keun;Ha Sang-Su;Han Sang Whan;Lee Li Ryung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.111-114
    • /
    • 2005
  • While the existing reinforced concrete flat plate(RC flat plate) has a lot of advantages including reduced building height, it has some weak points such as many steel bars and the brittle rupture by punching shear. Compared with the RC flat plate, the post-tensioned flat plate (PT flat plate) has not only the same merits, but it also makes longer span possible and induces slab-column connections to be failed with the ductile behavior rather than with the brittle behavior by means of post-tensioning. However, it is difficult to define the joint behavior of PT flat plate under vertical and lateral loads since there are limit experimental results. For this reason, the experimental study is undertaken to investigate the comparison of behavior of PT flat plate and RC flat plate, and how flat plate(Gravity Load Resisting System) is displaced as lateral loads, like the wind and the earthquake, are occur. The result of this experiment shows that PT flat plate is generally superior to RC flat plate in terms of controlling crack, postponing stiffness deterioration, energy dissipation, etc.

  • PDF

Flexural Response of Negative Moment Region of Hybrid Prestressed Precast Concrete (HPPC) System (하이브리드 프리스트레스트 프리캐스트 콘크리트 구조시스템의 부모멘트 영역 휨거동)

  • Choi, Seung-Ho;Hwang, Jin-Ha;Heo, InWook;Kim, Kang Su;Woo, Woon-Taek
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.10
    • /
    • pp.3-10
    • /
    • 2018
  • Hybrid Prestressed Precast Concrete System (HPPC system) is a newly developed frame system that can improve the performance of precast concrete (PC) joints by post-tensioning. In particular, the details proposed in this study can reduce the lifting weight of the PC members and eliminate problems caused by cracks in the joints that occur under service loads. This study performed an evaluation on the negative moment performance of full-scaled HPPC girders. The test specimens were cast with or without slabs, with bonded or unbonded tendons, and had different post-tensioned lengths in tensile section. The test results showed that the specimens with slabs had significantly higher stiffness and strength than those without slabs. There were no differences in the flexural behavior between those with bonded or unbonded tendons, and between those with short or long post-tensioned lengths in the negative moment region.

Design of Adhesive Joints for Composite Propeller Shafts (복합재료 동력전달축의 접착조인트 설계)

  • 김진국;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.149-153
    • /
    • 2000
  • Substituting composite structures for conventional metallic structures has many advantages because of higher specific stiffness and specific strength of composite materials. In this work, one-piece propeller shafts composed of carbonfepoxy and glass/epoxy composites were designed and manufactured for a rear wheel drive automobile satisfying three design specifications, such as static torque transmission capability, torsional buckling and the fundamental natural bending frequency. Single lap adhesively bonded joint was employed to join the composite shaft and the aluminum yoke. For the optimal adhesive joining of the composite propeller shaft to the aluminum yoke, the torque transmission capability of the adhesively bonded composite shaft was calculated with respect to bonding length and yoke thickness by finite element method and compared with the experimental result. Then an optimal design method was proposed based on the failure model which incorporated the nonlinear mechanical behavior of aluminum yoke and epoxy adhesive. From the experiments and FEM analyses, it was found that the static torque transmission capability of composite propeller shaft was maximum at the critical yoke thickness, and it saturated beyond the critical length. Also, it was found that the one-piece composite propeller shaft had 40% weight saving effect compared with a two-piece steel propeller shaft.

  • PDF

Experimental Investigation of The Lateral Retrofitting Effect of FRP Sheet and Buckling-restrained Braces for Beam-Column Joints (FRP Sheet와 비좌굴 가새를 적용한 보-기둥 접합부의 횡방향 보강효과에 관한 실험적 연구)

  • Byon, Eun-Hyuk;Kim, Min-Sook;Lee, Young-Hak;Kim, Hee-Cheul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.49-56
    • /
    • 2011
  • The strengthening effect of CFRP sheet and AFRP sheet with buckling-restrained brace for Beam-Column joints under constant axial and cyclic lateral loading is evaluated experimentally in this paper. Six test specimens were constructed. The main test parameters included the FRP Sheet and Buckling-restrained braces. The results of the tests were analyzed by focusing on their mode of failure, maximum load, ductility indexes, and energy dissipation capacity. Test results indicated that CFRP Sheet with the buckling-restrained brace system significantly increased the strength and stiffness of the specimen and that it was the most adequate retrofitting method.

Seismic performance of precast assembled bridge piers with hybrid connection

  • Shuang, Zou;Heisha, Wenliuhan;Yanhui, Liu;Zhipeng, Zhai;Chongbin, Zhang
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.407-417
    • /
    • 2023
  • Precast assembled bridge piers with hybrid connection (PASP) use both tendons and socket connections. To study the seismic performance of PASP, a full-scale in-situ test was performed based on an actual bridge project. The elastic-plastic fiber model of PASP was established using finite element software, and numerical analyses were performed to study the influence of prestress degree and socket depth on the PASP seismic performance. The results show that the typical failure mode of PASP under horizontal load is bending failure dominated by concrete cracking at the joint between the column and cushion cap. The cracking of the pier concrete and opening of joints depend on the prestress degree and socket depth. The prestressing tendons and socket connection can provide enough ductility, strength, restoration capability, and bending strength under small horizontal displacements. Although the bearing capacity and post yield stiffness of the pier can be improved to some extent by increasing the prestressing force, ductility is reduced, and residual deformation is increased. Overall, there are reasonable minimum socket depths to ensure the reliability of the socket connection.

A Study of Hydraulic Actuator Based On Electro Servo Valve For A Walking Robot (보행 로봇을 위한 서보밸브 구동 유압 액추에이터의 특성 분석)

  • Cho, Jung San
    • Journal of Drive and Control
    • /
    • v.13 no.2
    • /
    • pp.26-33
    • /
    • 2016
  • This paper describes of a mathematical and real experimental analysis for a walking robot which uses servo valve driven hydraulic actuator. Recently, many researchers are developing a walking robot based on hydraulic systems for the difficult and dangerous missions such as walking in the rough terrain and carrying a heavy load. In order to design and control a walking robot, the characteristics of the hydraulic actuators in the joint through the view point of walking such as controllability and backdrivability must be analyzed. A general mathematical model was used for analysis and proceeds to position and pressure changes characteristic of the input and backdrivability experiment. The result shows the actuator is a velocity source, had a high impedance, the output stiffness is high in contact with the rigid external force. So stand above the controller and instruments that complement the design characteristics can be seen the need to apply a hydraulic actuator in walking robot.

Development of the Hybrid Type Robot Using a Pneumatic Actuator For Physical Therapy Of Ankylosis (관절 경직 환자의 물리 치료를 위한 공압 구동형 하이브리드 로봇 개발)

  • 최현석;최철우;한창수;한정수
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.127-132
    • /
    • 2003
  • In this paper. the pneumatic service robot with a hybrid type is developed. A pneumatic has the advantages of good compliance , high Payload-to-weight and payload-to-volume ratios. high speed and force capabilities. Using pneumatic actuators. which have low stiffness. the service robot can guarantee safety. By suggesting a new serial-parallel hybrid type for the service robot which separates into Positioning motion and orienting motion, we can achieve large workspace and high strength-to-moving-weight ratio at the same time. A sliding mode controller can be designed for tracking the desired output using the Lyapunov stability theory and structural properties of pneumatic servo systems. Through many experiments of circular trajectory. the Pneumatic service robot is evaluated and verified.

A Test Procedure for Road Noise Evaluation (승용차의 도로면 소음 평가를 위한 시험절차 고찰)

  • 조영호;고강호;허승진;국형석;김찬묵;기지현;최윤봉
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.980-985
    • /
    • 2002
  • Several tests are performed to evaluate road booming noise. Baseline test delivers the information of road noise characteristics. Coupling effect between structure and acoustics is obtained from the mode shapes and the natural frequencies by the modal test. Equivalent stiffness at joint areas between chassis and car-body system can be determined by the input point inertance test. Noise sensitivity of body mounting point of a chassis part can be obtained from the noise transfer function test with input point inertance test. Operational deflection shape makes us analyze the actual vibration modes of the chassis system under actual loading and find noise sources very easily. finally, the transfer function analysis is used to identify noise paths through the chassis system. However, all of the tests above mentioned must be performed to evaluate road booming noise. The objectives and the procedures of the tests are described in this paper. Also, the guideline for efficient road noise evaluation test can be found.

  • PDF

Meningitis Occurred during Continuous Lumbar Epidural Block -A case report- (지속적 요부 경막외 차단 중 발생한 뇌막염 -증례 보고-)

  • Lee, Seong-Yeon;Chae, Jeong-Hye;Choi, Bong-Choon;Chun, Tae-Wan;Kim, Jeong-Ho;Kim, Chan
    • The Korean Journal of Pain
    • /
    • v.8 no.2
    • /
    • pp.383-385
    • /
    • 1995
  • Postpuncture headache is the most common complication of epidural block, others include abscission of the tip of catheter, epidural abscess and subarachnoid infection, etc. A 69-year-old female patient visited the Neuro-Pain Clinic of Seran General Hospital for treatment of lower back pain and both sciatica. She received continuous epidural block, psoas compartment block, lumbar facet joint block and lumbar facet thermocoagulation. During the epidural block procedure the dura was accidently punctured and auto-logous blood patch was performed. Three days later, she manifested fever, nausea, vomiting, mild neck stiffness and mental deterioration. Meningitis was suspected as the cause of these signs. The CSF study reported: protein 400 mg/dl, sugar 14 mg/dl, WBC $468/mm^3$. She was recovered from the meningitis after adequate antibiotic therapy.

  • PDF