• Title/Summary/Keyword: stiffness of joint

Search Result 822, Processing Time 0.027 seconds

Quantitative Analysis on Effective Stiffness of Horizontal Joints in Precast Concrete Large Panel Structures (P.C. 대형판 구조물의 수평접합부 유효강성에 대한 정량적 분석)

  • 이한선;장극관;신영식
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.3
    • /
    • pp.142-151
    • /
    • 1994
  • Though stiffnesses of joints in precast concrete(P.C.) large panel structures are known to be generally less than those in monolithic reinforced concrete wall structures, designers have very little information on the quantitative values with regards to these stiffnesses. The aim of this paper is to provide this quantitative information, in particular, on the compressive stiffness of horizontal joints, based on the analytical results derived from several experiments. Also, it is shown that the approach from the contact problem to determine this stiffness gives a value very simlar to those obtained above.

Experimental study on bearing capacity of PFCC column-RC beam joint reinforced with CST

  • Ping Wu;Dongang Li;Feng Yu;Yuan Fang;Guosheng Xiang;Zilong Li
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.19-36
    • /
    • 2023
  • An experimental study of eleven PVC-FRP Confined Concrete (PFCC) column-Reinforced Concrete (RC) beam joints reinforced with Core Steel Tube (CST) under axial compression is carried out. All specimens are designed in accordance with the principle of "weak column and strong joint". The influences of FRP strips spacing, length and steel ratio of CST, height and stirrup ratio of joint on mechanical behavior are investigated. As the design anticipated, all specimens are destroyed by column failure. The failure mode of PFCC column-RC beam joint reinforced with CST is the yielding of longitudinal steel bars, CST and stirrups of column as well as the fracture of FRP strips and PVC tube. The ultimate bearing capacity decreases as FRP strips spacing or joint height increases. The effects of other three studied parameters on ultimate bearing capacity are not obvious. The strain development rules of longitudinal steel bars, PVC tube, FRP strips, column stirrups and CST are revealed. The effects of various studied parameters on stiffness are also examined. Additionally, an influence coefficient of joint height is introduced based on the regression analysis of test data, a theoretical formula for predicting bearing capacity is proposed and it agrees well with test data.

Stiffness Analysis of External Fixation System with System Configuration Parameters (시스템 구성 인자를 고려한 외고정장치 시스템의 강성 해석)

  • Kim Yoon Hyuk;Lee Hyun Keun
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.531-536
    • /
    • 2004
  • In fracture treatment with external fixators, the inter-fragmentary movements at the fracture site affect the fracture healing process, and these movements are highly related to the stiffness of external fixation systems. Therefore, in order to provide the optimal fracture healing at the fracture site, it is essential to understand the relationship between the stiffness and the system configurations in external fixation system. In this study we investigated the influences of system configuration parameters on the stiffness in the finite element analysis of an external fixation system of a long bone. The system alignment, the geometric and the material non-linearity of the pin, the joint stiffness and the callus formation were considered in the finite element model. In the first, the system stiffness of the developed finite element model was compared with the experiment data for model validation. The consideration of the joint stiffness and nonlinearity of the model improved the system stiffness results. The joint stiffness, the non-alignment of the system decreased the system stiffness while the callus formation increased the system stiffness. The present results provided the biomechanical basis of rational guidelines for design improvements of external fixators and pre-op. planning to maximize the system stiffness in fracture surgery.

A Study of Nonlinear Unstable Phenomenon of Framed Space Structures Considering Joint Rigidity (절점 강성을 고려한 공간 구조물의 비선형 불안정 거동에 관한 연구)

  • Shon, Su-Deok;Kim, Seung-Deog;Hwang, Kyung-Ju;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.1 s.7
    • /
    • pp.87-97
    • /
    • 2003
  • The structural system that discreterized from continuous shells is frequently used to make a large space structures. As well these structures show the unstable phenomena when a load level over the limit load, and snap-through and bifurcation are most well known of it. For the collapse mechanism, rise-span ratio, element stiffness and load mode are main factor, which it give an effect to unstable behavior. In our real situation, most structures have semi-rigid joint that has middle characteristic between pin and rigid joint. So the knowledge of semi-rigid joint is very important problem of stable large space structure. And the instability phenemena of framed space structures show a strong non-linearity and very sensitive behavior according to the joint rigidity For this reason In this study, we are investigating to unstable problem of framed structure with semi-rigidity and to grasp the nonlinear instability behavior that make the fundamental collapse mechanism of the large space frame structures with semi-rigid joint, by proposed the numerical analysis method. Using the incremental stiffness matrix in chapter 2, we study instability of space structures.

  • PDF

Modeling and Vibration Analysis of Vehicle Structures Using Equivalent Beam Stiffness for Joints (결합부 등가빔을 이용한 저진동 차체의 모델링 및 해석기법)

  • 임홍재;김윤영;이상범;송명의
    • Journal of KSNVE
    • /
    • v.5 no.4
    • /
    • pp.537-542
    • /
    • 1995
  • In this paper the method of modeling and optimization for the joint of the vehicle structure is proposed. First it is described that the method of substituting equivalent beam elements to spring elements for the joint. The stiffnesses of the spring elementsare calculated using the section properties of equivalent beam elements. To get required dynamic characteristics section properties of equivalent beam element are set to design variables and optimized. The study shows that joint stiffnesses can be effectively determined in designing vehicle structure.

  • PDF

Exterior Joint Behavior of Low-Rise Reinforced Concrete Frame with Non-Seismic Detail (비내진 상세를 가진 저층 R.C조의 외부접합부 거동)

  • 김영문;기찬호;장준호;이세웅;김상대
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.481-486
    • /
    • 1998
  • In this paper, elastic and inelastic behavior of exterior joint of moment-resisting R.C frame with non-seismic detail subjected to reversed cyclic lateral load such as earthquake excitations was investigated. 1/2-scals subassemblage exterior beam-column joint including slab was manufactured based on similitude law. Then, pseudo static test under the displacement control was performed. The results of 1)crack pattern and failure mode, 2)degradation stiffness and strength, energy dissipation capacity from load-displacement hysteresis curve, 3)strain of steel were analysed.

  • PDF

Vibration Analysis of Expansion Joint with Rotary Inertia Using Transfer Matrix Method (전달행렬법을 이용하여 회전관성을 고려한 Expansion Joint의 진동해석)

  • Shin, Dong-Ho;Oh, Jae-Eung;Lee, Jung-Youn
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.544-549
    • /
    • 2011
  • Simplified formulae for axial and bending natural frequencies of bellows are developed using an equivalent thin-walled pipe model. The axial and bending stiffness of bellows is determined using lumped transfer matrix method. Accordingly, the Expansion Joint Manufacturers Association (EJMA) formula for axial and bending stiffness calculation is modified using two different equivalent radii. The results from the simplified formulae are verified by those from a experiment result and a finite element (FE) model and good agreement is shown between the each other.

  • PDF

Interpretation of fracture network in Rock mass using borehole wall image (시추공벽 영상을 이용한 암반내 절리구조 해석)

  • 김재동;김종훈
    • Tunnel and Underground Space
    • /
    • v.8 no.4
    • /
    • pp.342-350
    • /
    • 1998
  • In this study, fracture network in rock mass was interpreted using borehole wall images obtained by televiewer. The orientation and JRC value of major joint set were evaluated adopting image analysis techniques, of which process were written in macro-program code. As linking JRC to joint stiffness using Barton-Bandis model, fracture network map was produced for application to jointed rock modelling in numerical analysis of underground structure.

  • PDF