• 제목/요약/키워드: stiffness changes

검색결과 543건 처리시간 0.027초

동적 구조물의 구조변화에 의한 진동해석 연구 (A Study of Vibration Analysis Due to Structual Changes of Dynamic Structure)

  • 현천성;이기형;정인성
    • 대한기계학회논문집
    • /
    • 제16권11호
    • /
    • pp.2033-2048
    • /
    • 1992
  • 본 연구에서는 탄성체 구조물로 형성된 응용에서 좀더 공통된 상황에 관한 것 이다.유일한 선형해석모델의 규명에 필요한 정보제공을 위하여 충분히 넓은 진동수 범위에 걸쳐 응답을 측정하고, 구조물을 기진시키는 것은 불가능하고 비경제적이며 또 는 일반적으로 바람직하지 못할 것으로 생각된다.

Tracking control of variable stiffness hysteretic-systems using linear-parameter-varying gain-scheduled controller

  • Pasala, D.T.R.;Nagarajaiah, S.;Grigoriadis, K.M.
    • Smart Structures and Systems
    • /
    • 제9권4호
    • /
    • pp.373-392
    • /
    • 2012
  • Tracking control of systems with variable stiffness hysteresis using a gain-scheduled (GS) controller is developed in this paper. Variable stiffness hysteretic system is represented as quasi linear parameter dependent system with known bounds on parameters. Assuming that the parameters can be measured or estimated in real-time, a GS controller that ensures the performance and the stability of the closed-loop system over the entire range of parameter variation is designed. The proposed method is implemented on a spring-mass system which consists of a semi-active independently variable stiffness (SAIVS) device that exhibits hysteresis and precisely controllable stiffness change in real-time. The SAIVS system with variable stiffness hysteresis is represented as quasi linear parameter varying (LPV) system with two parameters: linear time-varying stiffness (parameter with slow variation rate) and stiffness of the friction-hysteresis (parameter with high variation rate). The proposed LPV-GS controller can accommodate both slow and fast varying parameter, which was not possible with the controllers proposed in the prior studies. Effectiveness of the proposed controller is demonstrated by comparing the results with a fixed robust $\mathcal{H}_{\infty}$ controller that assumes the parameter variation as an uncertainty. Superior performance of the LPV-GS over the robust $\mathcal{H}_{\infty}$ controller is demonstrated for varying stiffness hysteresis of SAIVS device and for different ranges of tracking displacements. The LPV-GS controller is capable of adapting to any parameter changes whereas the $\mathcal{H}_{\infty}$ controller is effective only when the system parameters are in the vicinity of the nominal plant parameters for which the controller is designed. The robust $\mathcal{H}_{\infty}$ controller becomes unstable under large parameter variations but the LPV-GS will ensure stability and guarantee the desired closed-loop performance.

Numerical and experimental investigation for damage detection in FRP composite plates using support vector machine algorithm

  • Shyamala, Prashanth;Mondal, Subhajit;Chakraborty, Sushanta
    • Structural Monitoring and Maintenance
    • /
    • 제5권2호
    • /
    • pp.243-260
    • /
    • 2018
  • Detection of damages in fibre reinforced plastic (FRP) composite structures is important from the safety and serviceability point of view. Usually, damage is realized as a local reduction of stiffness and if dynamic responses of the structure are sensitive enough to such changes in stiffness, then a well posed inverse problem can provide an efficient solution to the damage detection problem. Usually, such inverse problems are solved within the framework of pattern recognition. Support Vector Machine (SVM) Algorithm is one such methodology, which minimizes the weighted differences between the experimentally observed dynamic responses and those computed using the finite element model- by optimizing appropriately chosen parameters, such as stiffness. A damage detection strategy is hereby proposed using SVM which perform stepwise by first locating and then determining the severity of the damage. The SVM algorithm uses simulations of only a limited number of damage scenarios and trains the algorithm in such a way so as to detect damages at unknown locations by recognizing the pattern of changes in dynamic responses. A rectangular fiber reinforced plastic composite plate has been investigated both numerically and experimentally to observe the efficiency of the SVM algorithm for damage detection. Experimentally determined modal responses, such as natural frequencies and mode shapes are used as observable parameters. The results are encouraging since a high percentage of damage cases have been successfully determined using the proposed algorithm.

탄성파를 이용한 흙의 특성연구 (Soil Properties in Relation to Elastic Wave)

  • 조계춘;이인모
    • 한국지반공학회논문집
    • /
    • 제18권6호
    • /
    • pp.83-101
    • /
    • 2002
  • 탄성파는 지표면에 가까운 흙에 관한 중요한 정보를 공급한다. 흙특성 파악에 물리탐사기법의 원활한 적용을 위하여 탄성파인자와 흙특성과의 관계를 고찰하였다. 적용 예로서, 비포화토의 거동 및 특성을 전단파 시험을 통하여 알아보았다. 포화시료를 건조하면서 밴더엘리먼트를 사용하여 미소변형률 전단강성을 연속적으로 측정하였다. 비포화토에서는 모세관현상, 이온공유에 의한 접착, 세립자 이동에 의한 강화효과, 염 침전에 의한 시멘트결합과 같은 입자간 힘의 변화가 강성의 변화에 직접적으로 영향을 끼치는 것으로 나타났다. 비포화토의 시료를 교란함으로써 메니스커스의 회복에 대한 연구를 수행하였고, 비포화토에서 일어나는 여러 가지 현상들을 제시하였다.

Response modification factor and seismic fragility assessment of skewed multi-span continuous concrete girder bridges

  • Khorraminejad, Amir;Sedaghati, Parshan;Foliente, Greg
    • Earthquakes and Structures
    • /
    • 제20권4호
    • /
    • pp.389-403
    • /
    • 2021
  • Skewed bridges, being irregular structures with complicated dynamic behavior, are more susceptible to earthquake damage. Reliable seismic-resistant design of skewed bridges can be achieved by accurate determination of nonlinear seismic demands. However, the effect of geometric characteristics on the response modification factor (R-factor) is not accounted for in bridge design practices. This study attempts to investigate the effects of changes in the number of spans, skew angle and bearing stiffness on R-factor values and to assess the seismic fragility of skewed bridges. Results indicated that changes in the skew angle had no significant effect on R-factor values which were in consonance with code-prescribed R values. Also, unlike the increase in the number of spans that resulted in a decrease in the R-factor, the increase in bearing stiffness led to higher R-factor values. Findings of the fragility analysis implied that although the increase in the number of spans, as well as the increase in the skew angle, led to a higher failure probability, greater values of bearing stiffness reduced the collapse probability. For practicing design engineers, it is recommended that maximum demands on substructure elements to be calculated when the excitation angle is applied along the principal axes of skewed bridges.

판넬의 덴팅에 관한 연구 (A Study of Panel Denting)

  • 정동원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.610-615
    • /
    • 2001
  • In the interest of improved automotive fuel economy, one solution is reducing vehicle weight. Achieving significant weight reductions will normally require reducing the panel thickness or using alternative materials such as aluminum alloy sheet. These changes will affect the dent resistance of the panel. In this study, the correlation between panel size, curvature, thickness, material properties and dent resistance is investigated. A parametric approach is adopted, utilizing a "design software" tool incorporating empirical equations to predict denting and panel stiffness for simplified panels. The developed design program can be used to minimize panel thickness or compare different materials, while maintaining adequate panel performance.

  • PDF

감즙염색이 직물의 태에 미치는 영향 (Effect of Dyeing by Immature Persimmon Juice on the Hand of Fabrics)

  • 고은숙;이혜선
    • 한국의류학회지
    • /
    • 제27권8호
    • /
    • pp.883-891
    • /
    • 2003
  • In this study, a change of hand of fabrics dyed with persimmon juice was measured using Kawabata Evaluation System. Using various cotton fabrics, linen fabric and silk fabric used frequently for persimmon juice dyeing, we examined the changes of physical properties and hand according to persimmon juice dyeing and washing. The dynamic characteristics of hand were measured tensile, shear, bending, compression, surface properties, thickness and weight. Linearity of load-extention and tensile resilience were increased in all kinds of fabrics after dyeing. Tensile energy decreased in cotton fabric 2(gauze), cotton fabric 3(muslin) and linen fabric. Shear stiffness and hysteresis of shear increased in most of fabrics. Bending rigidity of the bending property and hysteresis of bending, linearity of compression of the compression property, compression energy and compression resilience increased in all kinds of fabrics after dyeing. Thickness and weight increased much in all kinds of fabrics after dyeing. In the primary hand value, stiffness and anti-drape stiffness increased in all kind of fabrics after dyeing. The fullness and softness, crispness, scrooping feeling and flexibility with soft feeling decreased. As the stiffness after persimmons dyeing increased, it was suitable for clothes material of summer.

Study on magnetorheological damper stiffness shift

  • Jafarkarimi, Mohammad H.;Ghorbanirezaei, Shahryar;Hojjat, Yousef;Sabermand, Vahid
    • Smart Structures and Systems
    • /
    • 제25권3호
    • /
    • pp.279-284
    • /
    • 2020
  • Electrical current is usually used to change the damping force of Magnetorheological Dampers (MRDs). However, changing the electrical current could shift the stiffness of the system, the phenomenon that was not considered carefully. This study aims to evaluate this shift. A typical MRD was designed, optimized, and fabricated to do some accurate and detailed experimental tests to examine the stiffness variation. The damper is equipped with a circulating system to prevent the deposition of particles when it is at rest. Besides that, a vibration setup was developed for the experimental study. It is capable of generating vibration with either constant frequency or frequency sweep and measure the amplitude of vibration. The damper was tested by the vibrating setup, and it was concluded that with a change in electrical current from 0 to 1.4 A, resonant frequency would change from 13.8 Hz to 16 Hz. Considering the unchanging mass of 85.1 kg, the change in resonant frequency translates as a shift in stiffness, which changes from 640 kN/m to 860 kN/m.

엠보싱 구조재의 성형성 향상에 관한 연구 (A Study on the Improvement of Formability of Embossing Structure)

  • 김형종;정동원;최두선;제태진;박재현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1269-1272
    • /
    • 2005
  • Sandwich structures, which are composed of thick core between two thin faces, are commonly used in many engineering applications because they combine high stiffness and strength with low weight. In this research, we have investigated the embossing configuration at the sheet metal shape through research with regard to the construction that the hardness and stiffness are excellent, and formability is advantage as inner structure. Through the FLD analysis according to the pattern changes, we have confirmed the forming possibility and variation of the aspect thickness. Also, we have fabricated the embossing press mold according to the pattern changes, and obtained the embossing inner structure the forming experiments.

  • PDF

Monitoring of tall slender structures by GPS measurements

  • Chmielewski, Tadeusz;Breuer, Peter;Gorski, Piotr;Konopka, Eduard
    • Wind and Structures
    • /
    • 제12권5호
    • /
    • pp.401-412
    • /
    • 2009
  • A method is applied for the estimation of structural damage of tall slender structures using natural frequency and displacements measurements by GPS. The relationship between the variation in the global stiffness matrix (or in the stiffness of each finite element) and the change in the natural frequencies of the structure is given. In engineering practice the number of frequencies which can be derived by GPS measurement of long-period structures will be equal to one, two or three first natural frequencies. This allows us in initial studies to detect damage with frequency changes based on forward methods in which the measured frequencies are compared with the predicted analytical data. This idea, of health monitoring from possible changes to natural frequencies, or from a statement of excessive displacements is applied to the Stuttgart TV Tower.