• 제목/요약/키워드: stiffening rings

검색결과 8건 처리시간 0.018초

Effects of stiffening rings on the dynamic properties of hyperboloidal cooling towers

  • Zhang, Jun-Feng;Chen, Huai;Ge, Yao-Jun;Zhao, Lin;Ke, Shi-Tang
    • Structural Engineering and Mechanics
    • /
    • 제49권5호
    • /
    • pp.619-629
    • /
    • 2014
  • As hyperboloidal cooling towers (HCTs) growing larger and slender, they become more sensitive to gust wind. To improve the dynamic properties of HCTs and to improve the wind resistance capability, stiffening rings have been studied and applied. Although there have been some findings, the influence mechanism of stiffening rings on the dynamic properties is still not fully understood. Based on some fundamental perceptions on the dynamic properties of HCTs and free ring structures, a concept named "participation degree" of stiffening rings was proposed and the influence mechanism on the dynamic properties was illustrated. The "participation degree" is determined by the modal deform amplitude and latitude wave number of stiffening rings. Larger modal deform amplitude and more latitude waves can both result in higher participation degree and more improvement to eigenfrequencies. Also, this concept can explain and associate the pre-existing independent findings.

A study on the average wind load characteristics and wind-induced responses of a super-large straight-cone steel cooling tower

  • Ke, S.T.;Du, L.Y.;Ge, Y.J.;Zhao, L.;Tamura, Y.
    • Wind and Structures
    • /
    • 제25권5호
    • /
    • pp.433-457
    • /
    • 2017
  • As a novel typical wind-sensitive structure, the wind load and wind-induced structural behaviors of super-large straight-cone cooling towers are in an urgent need to be addressed and studied. A super large straight-cone steel cooling tower (189 m high, the highest in Asia) that is under construction in Shanxi Power Plant in China was taken as an example, for which four finite element models corresponding to four structural types: the main drum; main drum + stiffening rings; main drum + stiffening rings + auxiliary rings (auxiliary rings are hinged with the main drum and the ground respectively); and main drum + stiffening rings + auxiliary rings (auxiliary rings are fixed onto the main drum and the ground respectively), were established to compare and analyze the dynamic properties and force transferring paths of different models. After that, CFD method was used to conduct numerical simulation of flow field and mean wind load around the cooling tower. Through field measurements and wind tunnel tests at home and abroad, the reliability of using CFD method for numerical simulation was confirmed. On the basis of this, the surface flow and trail characteristics of the tower at different heights were derived and the wind pressure distribution curves for the internal and external surfaces at different heights of the tower were studied. Finally, based on the calculation results of wind-induced responses of the four models, the effects of stiffening rings, auxiliary rings, and different connecting modes on the dynamic properties and wind-induced responses of the tower structure were derived and analyzed; meanwhile, the effect mechanism of internal suction on such kind of cooling tower was discussed. The study results could provide references to the structure selection and wind resistance design of such type of steel cooling towers.

A comparison of structural performance enhancement of horizontally and vertically stiffened tubular steel wind turbine towers

  • Hu, Yu;Yang, Jian;Baniotopoulos, Charalambos C.;Wang, Feiliang
    • Structural Engineering and Mechanics
    • /
    • 제73권5호
    • /
    • pp.487-500
    • /
    • 2020
  • Stiffeners can be utilised to enhance the strength of thin-walled wind turbine towers in engineering practise, thus, structural performance of wind turbine towers by means of different stiffening schemes should be compared to explore the optimal structural enhancement method. In this paper two alternative stiffening methods, employing horizontal or vertical stiffeners, for steel tubular wind turbine towers have been studied. In particular, two groups of three wind turbine towers of 50m, 150m and 250m in height, stiffened by horizontal rings and vertical strips respectively, were analysed by using FEM software of ABAQUS. For each height level tower, the mass of the stiffening rings is equal to that of vertical stiffeners each other. The maximum von Mises stresses and horizontal sways of these towers with vertical stiffeners is compared with the corresponding ring-stiffened towers. A linear buckling analysis is conducted to study the buckling modes and critical buckling loads of the three height levels of tower. The buckling modes and eigenvalues of the 50m, 150m and 250m vertically stiffened towers were also compared with those of the horizontally stiffened towers. The numbers and central angles of the vertical stiffeners are considered as design variables to study the effect of vertical stiffeners on the structural performance of wind turbine towers. Following an extensive parametric study, these strengthening techniques were compared with each other and it is obtained that the use of vertical stiffeners is a more efficient approach to enhance the stability and strength of intermediate and high towers than the use of horizontal rings.

Investigation of stiffening scheme effectiveness towards buckling stability enhancement in tubular steel wind turbine towers

  • Stavridou, Nafsika;Efthymiou, Evangelos;Gerasimidis, Simos;Baniotopoulos, Charalampos C.
    • Steel and Composite Structures
    • /
    • 제19권5호
    • /
    • pp.1115-1144
    • /
    • 2015
  • Current climate conditions along with advances in technology make further design and verification methods for structural strength and reliability of wind turbine towers imperative. Along with the growing interest for "green" energy, the wind energy sector has been developed tremendously the past decades. To this end, the improvement of wind turbine towers in terms of structural detailing and performance result in more efficient, durable and robust structures that facilitate their wider application, thus leading to energy harvesting increase. The wind tower industry is set to expand to greater heights than before and tapered steel towers with a circular cross-section are widely used as more capable of carrying heavier loads. The present study focuses on the improvement of the structural response of steel wind turbine towers, by means of internal stiffening. A thorough investigation of the contribution of stiffening rings to the overall structural behavior of the tower is being carried out. These stiffening rings are placed along the tower height to reduce local buckling phenomena, thus increasing the buckling strength of steel wind energy towers and leading the structure to a behavior closer to the one provided by the beam theory. Additionally to ring stiffeners, vertical stiffening schemes are studied to eliminate the presence of short wavelength buckles due to bending. For the purposes of this research, finite element analysis is applied in order to describe and predict in an accurate way the structural response of a model tower stiffened by internal stiffeners. Moreover, a parametric study is being performed in order to investigate the effect of the stiffeners' number to the functionality of the aforementioned stiffening systems and the improved structural behavior of the overall wind converter.

Wind loads and wind-resistant behaviour of large cylindrical tanks in square-arrangement group. Part 1: Wind tunnel test

  • Liu, Qing;Zhao, Yang;Cai, Shuqi;Dong, Shilin
    • Wind and Structures
    • /
    • 제31권6호
    • /
    • pp.483-493
    • /
    • 2020
  • Large cylindrical floating-roof tanks, constructed as oil containers, are usually distributed regularly in open area and easily exposed to severe wind loads. However, wind pressures around these grouped squat tanks appear to have not been clearly given in design codes or thoroughly studied in existing researches. This paper conducts a detailed investigation on wind loads on the external wall of a four-tank group in square arrangement. To achieve that, wind tunnel tests are carried out on both empty and full tank groups, considering various wind angles and spacing. Results show that 3 regions in elevation can be identified on the tank shell according to the circumferential wind pressure distribution. The upper 2 regions cover a relatively small portion of the shell where excessive negative pressures are spotted, setting an alarm to the design of the top angle and stiffening rings. By comparing results on grouped tanks to those on an isolated tank, grouping effects concerning wind angle, tank position in group and spacing are discussed. Deviations on pressure distributions that will compromise structural safety are outlined, including the increase of negative pressures, the shift of maximum pressure locations as well as the change of positive pressure range. And, several potentially unfavourable wind pressure distributions are selected for further analyses.

복합재료원통셸의 고유진동수 및 좌국하중에 대한 직교보강 특성 연구 (Study on the Orthogonal Stiffening Characteristics for the Natural Frequencies and Buckling Loads of the Composite Laminated Cylindrical Shells)

  • 이영신;김영완
    • 소음진동
    • /
    • 제6권4호
    • /
    • pp.457-467
    • /
    • 1996
  • The analytical solutions for the free vibration and buckling of cross -ply laminated composite cylindrical shell with the orthogonal stiffeners, i. e., axial stiffeners(stringers) and circumferential stiffeners(rings), are presented using the energy method. The stiffeners are assumed to be an integral part of the shell and have been directly included in analysis(it's called discrete stiffener theory). The effect of the parameters such as the stacking sequences, the shell thickness, the shell length-to-radius ratio are studied. By comparison with the previously published analytical results for the stiffened cylindrical shells, it is shown that natural frequencies can be determined with adequate accuracy.

  • PDF

보강원통셸의 최소중량화설계 연구 (A Study on the Minimum Weight Design of Stiffened Cylindrical Shells)

  • 원종진
    • 대한기계학회논문집
    • /
    • 제16권4호
    • /
    • pp.630-648
    • /
    • 1992
  • 본 연구에서는 여러가지 하중조건하에서 단순지지된 보강원통셸의 최소중량화 설계문제를 CONMIN을 사용하여 해석하고, 일반적인 대칭적층[0/.+-..theta./90]$_{s}$ 의 복합 적층원통셸, 복합적층honeycomb sandwich원통셸, 그리고 보강된 복합적층원통셸의 최 소중량화 설계문제에도 확장 적용한다. 설계변수(design variable)로는 등방성재료 인 경우와 복합적층인 경우 최대 9개, 부등제한조건으로는 전체좌굴(general buckling ), 준전체좌굴(panel buckling), 판 및 보강재의 국부좌굴(local cripping), 로링모드 (rolling mode), 그리고 응력과 변형률제한 등의 성질제한조건(behavior constraints) 과 설계변수의 상, 하한을 나타내는 기하학적 제한(side constraints)등 최대 32개를 설정한다. 본 최소중량화 설계예에서는 보강재의 최적단면형상을 검토하기 위하여 직사각형(R)형, I형, 그리고 T형 단면 등의 보강재들을 사용한다.

LNG 알루미늄 판재 가공용 자동 궤적 추적 알고리즘 개발 및 인공지능을 이용한 공정조건 선정에 관한 연구 (A Study on Development of Automatic Path Tracking Algorithm for LNG Aluminium Plate and Selection of Process Parameters by Using Artificial Intelligence)

  • 문형순;권봉재;정문영;신상룡
    • 한국정밀공학회지
    • /
    • 제15권8호
    • /
    • pp.17-25
    • /
    • 1998
  • Aluminum alloys have low density, relatively high strength and yield strength, good plasticity, good machinability, and high corrosion and acid resistance. Therefore, they are suitable for large containers for the food, chemical and other industries. Large containers are often bodies of revolution consisting of shell courses, stiffening rings, heads and other elements joined by annular welds. Larger containers have longer welds and require greater leak-tightness and higher weld mechanical properties. The LNG tank consists of aluminum plates with various sizes, so its construction should by divided by several sections. Moreover, each section has its own sub-section consisted of several aluminum plates. To guarantee the quality of huge LNG tank, therefore, the precise control of plate dimension should by urgently needed in conjunction with the appropriate selection of process parameters such as cutting speed, depth of cut, rotational speed and so on. In this paper, a manufacturing system was developed to implement automatic circular tracking in height direction and automatic circular interpolation in depth of cut direction. Also, the neural network based on the backpropagation algorithm was used to predict the cutting quality and motor load related with the life time of the developed system. It was revealed that the manufacturing system and the neural network could be effectively applied to the bevelling process and to predict the quality of machined area and the motor load.

  • PDF