References
- Abu-Sitta, S.H. (1973), "Hyperbolic cooling towers", Eng. J., AISC, 56(10): 26-28.
- Babu, G.R., Rajan, S.S., Harikrishna, P., Lakshmanan, N. and Arunachalam, S. (2013), "Experimental determination of wind-induced response on a model of natural draught cooling tower", Exp. Tech., 37(1), 35-46. https://doi.org/10.1111/j.1747-1567.2011.00715.x
- Bosman, P.B., Strickland, I.G. and Prukl, R.P. (1998), "Strengthening of natural draught cooling tower shells with stiffening rings", Eng. Struct., 20(10), 909-914. https://doi.org/10.1016/S0141-0296(97)00118-1
- Busch, D., Harte, R. and Niemann, H.J. (1998), "Study of a proposed 200m high natural draught cooling tower at power plant Frimmersdorf/Germany", Eng. Struct., 20(10), 920-927. https://doi.org/10.1016/S0141-0296(97)00120-X
- Eckstein, U., Harte, R., Kratzig, W.B. and Wittek, U. (1987), "Simulation of static and kinetic buckling of unstiffened and stiffened cooling tower shells", Eng. Struct., 9(1), 9-18. https://doi.org/10.1016/0141-0296(87)90035-6
- Farell, C., Guven, O. and Maisch, F. (1976), "Mean wind loading on rough-walled cooling towers", J. Eng. Mech. div., ASCE, 102(6), 1059-1081.
- Form, J. (1986), "The ring-stiffened shell of the ISAR II nuclear power plant natural-draught cooling tower", Eng. Struct., 8(3), 199-207. https://doi.org/10.1016/0141-0296(86)90053-2
- Gopinath, S., Iyer, N., Rajasankar, J. and D'Souza, S. (2012), "Nonlinear analysis of RC shell structures using multilevel modelling techniques", Eng. Comput., 29(2), 104-124. https://doi.org/10.1108/02644401211206016
- Goudarzi, M.A. and Sabbagh-Yazdi, S.R. (2008), "Modeling wind ribs effects for numerical simulation external pressure load on a cooling tower of KAZERUN power plant-IRAN", Wind Struct. Int. J., 11(6), 479-496. https://doi.org/10.12989/was.2008.11.6.479
- Gould, P.L. and Guedelhoefer, O.C. (1989), "Repair and completion of damaged cooling tower", J. Struct. Eng., ASCE, 115(3), 576-593. https://doi.org/10.1061/(ASCE)0733-9445(1989)115:3(576)
- Harte, R. and Wittek, U. (2009), "Recent developments of cooling tower design", Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium, Spanish, Valencia.
- Ke, S.T., Geb, Y.J., Zhaob, L. and Tamurac, Y. (2012), "A new methodology for analysis of equivalent static wind loads on super-large cooling towers", J. Wind Eng. Ind. Aerodyn., 111(3), 30-39. https://doi.org/10.1016/j.jweia.2012.08.001
- Mahdi, I and Khosrow, B. (2013), "Natural draft steel hyperbolic cooling towers: Optimization and performance evaluation", Struct. Des. Tall Spec. Build., 23(4), DOI: 10.1002/tal.1081.
- Medwadowski, S.J. (2004), "Buckling of concrete shells: An overview", J. Int. Assoc. Shell Spatial Struct., 45(144), 51-63.
- Meschke, G., Huemer, T. and Mang, H. (1999), "Computer-aided retrofitting of a damaged RC cooling tower shell", J. Struct. Eng., 125(3), 328-337. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:3(328)
- Mungan, I. and Lehmkamper, O. (1979), "Buckling of stiffened hyperboloidal cooling towers", J. Struct. div., ASCE, 105(10), 1999-2007.
- Niemann, H.J. (1980), "Wind effects on cooling-tower shells", J. Struct. Div., ASCE, 106(3), 643-661.
- Niemann, H.J. and Zerna, W. (1986), "Impact of research on development of large cooling towers", Eng. Struct., 8(2), 74-86. https://doi.org/10.1016/0141-0296(86)90023-4
- Noh, H.C. (2006), "Nonlinear behavior and ultimate load bearing capacity of reinforced concrete natural draught cooling tower shell", Eng. Struct., 28(3), 399-410. https://doi.org/10.1016/j.engstruct.2005.08.016
- Peters, H.L. (1986), "Ring-stiffened shell constructions-a structural alternative or a technical and economic necessity?", Eng. Struct., 8(1),17-24 https://doi.org/10.1016/0141-0296(86)90015-5
- Sabouri-Ghomi, S., Kharrazi, M.H.K. and Javidan, P. (2006), "Effect of stiffening rings on buckling stability of R.C. hyperbolic cooling towers", Thin Wall. Struct., 44(2), 152-158. https://doi.org/10.1016/j.tws.2006.02.005
- Zhang, J.F., Ge, Y.J. and Zhao, L. (2013), "Influence of latitude wind pressure distribution on the responses of hyperbolodial cooling tower shell", Wind Struct., 16(6), 579-601. https://doi.org/10.12989/was.2013.16.6.579
Cited by
- Non-Gaussian characteristics and extreme distribution of fluctuating wind pressures on large cylindrical-conical steel cooling towers vol.26, pp.18, 2017, https://doi.org/10.1002/tal.1403
- Extreme Wind Pressures and Non-Gaussian Characteristics for Super-Large Hyperbolic Cooling Towers Considering Aeroelastic Effect vol.141, pp.7, 2015, https://doi.org/10.1061/(ASCE)EM.1943-7889.0000922
- Influence of ventilation rate on the aerodynamic interference between two extra-large indirect dry cooling towers by CFD vol.20, pp.3, 2015, https://doi.org/10.12989/was.2015.20.3.449
- Wind-induced vibration characteristics and parametric analysis of large hyperbolic cooling towers with different feature sizes vol.54, pp.5, 2015, https://doi.org/10.12989/sem.2015.54.5.891
- Static and free vibration behaviour of orthotropic elliptic paraboloid shells vol.23, pp.6, 2014, https://doi.org/10.12989/scs.2017.23.6.737
- A study on the average wind load characteristics and wind-induced responses of a super-large straight-cone steel cooling tower vol.25, pp.5, 2014, https://doi.org/10.12989/was.2017.25.5.433
- The influence of internal ring beams on the internal pressure for large cooling towers with wind-thermal coupling effect vol.28, pp.1, 2014, https://doi.org/10.12989/was.2019.28.1.001
- Natural frequency responses of hybrid polymer/carbon fiber/FG-GNP nanocomposites paraboloidal and hyperboloidal shells based on multiscale approaches vol.119, pp.None, 2014, https://doi.org/10.1016/j.ast.2021.107111