• Title/Summary/Keyword: stiffened length

Search Result 39, Processing Time 0.034 seconds

Buckling Behavior of Stiffened Laminated Composite Cylindrical Panel (보강된 복합적층 원통형패널의 좌굴거동)

  • 이종선;원종진;홍석주;윤희중
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.5
    • /
    • pp.88-93
    • /
    • 2003
  • Buckling behavior of stiffened laminated composite cylindrical panel was studied using linear and nonlinear deformation theory. Various buckling load factors are obtained for stiffened laminated composite cylindrical panels with rectangular type longitudinal stiffeners and various longitudinal length to radius ratio, which made from Carbon/Epoxy USN150 prepreg and are simply-supported on four edges under uniaxial compression. Buckling behavior design analyses are carried out by the nonlinear search optimizer, ADS.

Buckling and Optimum Reinforcement of Axially Stiffened Cylindrical Shells (보강(補剛) 원통 Shell의 좌굴(挫屈) 및 최적보강(最適補强))

  • Jang, Chang-Doo;Nho, Wan
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.1
    • /
    • pp.42-50
    • /
    • 1987
  • The energy expressions are formulated for the axially stiffened shell treating the stiffeners as discrete elements. The principle of minimum potential energy is employed to formulate the buckling equations for a simply supported, axially stiffened shell under uniform axial compression. The displacement functions are expended into double trigonometric series. The mode assuming method employed in this paper makes it possible to reduce the matrix size of the eigenvalue problem considerably. Effects are made to investigate the transition from overall buckling to local buckling and to verify the existence of the minimum stiffness ratio of stiffener as in the case of stiffened plate. The results of the calculation show that the critical stiffener size increase linearly as the length of the shell increases. The results also show that the overall buckling load decreases and the local buckling load has a nearly constant value as the length of the shell increases. The results show very good agreements with other computational available.

  • PDF

Analysis of Cantilever Cylindrical Shells with Edge-Stiffeners (캔틸레버 원통형 쉘의 단부보강 해석)

  • Park, Weon-Tae;Son, Byung-Jik
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.4 s.72
    • /
    • pp.78-86
    • /
    • 2005
  • In this study, cantilever cylindrical shells with edge-stiffeners are analyzed. A versatile 4-node flat shell element which is useful for the analysis of shell structures is used. An improved flat shell element is established by the combined use of the addition of non-conforming displacement modes and the substitute shear strain fields. Three models by load conditions are considered. Model A, B and C are loaded by point load at the free edge, line load and external pressure respectively. A various parameter examples are presented to obtain proper stiffened length and stiffened thickness of edge-stiffeners. It is shown that the thickness of shell can be reduced more than 50% for Model A, about $20{\sim}30%$ for Model B by appropriate edge-stiffeners.

Crack Growth Analysis and Crack Arrest Design of Stiffened Panels(III) - Experimental Evaluation of Crack Arrest Design Chart (보강판의 균열거동해석과 Crack Arrest 설계(III) - Crack Arrest Design 차트의 실험평가)

  • Rhee, Eui-Jong;Rhee, Hwan-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.2
    • /
    • pp.42-48
    • /
    • 2006
  • In order to assess the validity of fatigue crack arrest design charts obtained from our previous numerical approach to fatigue crack arrest condition, an extensive fatigue crack growth/arrest test was performed using CT-type integrally stiffened panels. The results are presented as fatigue crack growth rate and non-dimensional crack length relationship, and these are compared with numerically simulated crack growth rates. The measured values of da/dN at the moment of fatigue crack arrest occurred in stiffened panels are good agreement with those numerically simulated crack growth rates.

  • PDF

Optimum Shape for Buckling and Post-Buckling Behavior of a Laminated Composite Panel with I-type Stiffeners

  • Lee, Gwang-Rog;Yang, Won-Ho;Sub, Myung-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1211-1221
    • /
    • 2002
  • A shape optimization of stiffener was conducted to increase buckling load or failure load with stiffened laminated composite panel of I-type under compression loading. Design variables are cap length, web length, and/or thickness under the constraint of volume constancy. The objective function is buckling load and failure load of post-buckling based on Tsai-Hill theory using ABAQUS 5.8 for analysis and Optimizer on Broydon-Fletcher Goldfarb-Sharno Method and Augmented Lagrange Multiplier Method. The effects of relative length of a web and a cap of stiffener on buckling load and failure load of post-buckling were investigated with the results of optimum design.

An Study on the Stiffened Effect of K-type Tubular Connection (강관 K형 접합부의 보강효과에 관한 연구)

  • Kim, Woo Bum;Lee, Young Jung;Kim, Kap Sun;Chung, Soo Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.6
    • /
    • pp.609-619
    • /
    • 2001
  • It is almost impossible to evaluate the ultimate strength theoretically, because the behavior of Gusset-Tube connection stiffened with rib-plate is considerably complicate. Therefore in this study a finite element model of gusset-tube connection stiffened with rib-plate was established. The validity of finite element analysis was examined through comparing with previous experimental result and the behavior and strength of the connection was examined. From the parametric study considering lateral force ratio, eccentricity, gusset length based on finite element model, the stiffened effect was estimated and stiffening method was proposed.

  • PDF

Design of web-stiffened lipped channel beams experiencing distortional global interaction by direct strength method

  • Hashmi S.S. Ahmed;G. Khushbu;M. Anbarasu;Ather Khan
    • Structural Engineering and Mechanics
    • /
    • v.90 no.2
    • /
    • pp.117-125
    • /
    • 2024
  • This article presents the behaviour and design of cold-formed steel (CFS) web-stiffened lipped channel beams that primarily fail owing to the buckling interaction of distortional and global buckling modes. The incorporation of an intermediate stiffener in the web of the lipped channel improved the buckling performance leads to distortional buckling at intermediate length beams. The prediction of the strength of members that fail in individual buckling modes can be easily determined using the current DSM equations. However, it is difficult to estimate the strength of members undergoing buckling interactions. Special attention is required to predict the strength of the members undergoing strong buckling interactions. In the present study, the geometric dimensions of the web stiffened lipped channel beam sections were chosen such that they have almost equal distortional and global buckling stresses to have strong interactions. A validated numerical model was used to perform a parametric study and obtain design strength data for CFS web-stiffened lipped channel beams. Based on the obtained numerical data, an assessment of the current DSM equations and the equations proposed in the literature (for lipped channel CFS sections) is performed. Suitable modifications were also proposed in this work, which resulted in a higher level of design accuracy to predict the flexural strength of CFS web stiffened lipped channel beams undergoing distortional and global mode interaction. Furthermore, reliability analysis was performed to confirm the reliability of the proposed modification.

The effects of stiffener configuration on stiffened T-stubs

  • Ozkılic, Yasin Onuralp
    • Steel and Composite Structures
    • /
    • v.44 no.4
    • /
    • pp.489-502
    • /
    • 2022
  • The stiffeners, also known as ribs, are utilized to increase the resistance of T-stubs. The author's previous studies showed that stiffeners can increase plastic capacity by an average of 1.71 times. A combined experimental and numerical study was undertaken to examine the effects of the stiffener configuration on the behavior of T-stubs. A total of 20 stiffened T-stubs where the shape and angle of stiffeners were considered as the main parameters were tested under monotonic loading. Rectangular, triangular and AISC types of stiffener were tested under monotonic loading. The experimental results indicated that when the height of the stiffener is equal to or higher than the length of the stiffener, the shape of the stiffener does not have an influence on the behavior. A numerical study using the finite element tool ABAQUS was carried out in order to further investigate the effects of the stiffener shapes. In this case, the height is considered less than the length of the stiffener. Moreover, the shape of the stiffeners was investigated with the different thicknesses of the stiffener. The simulation findings revealed that when the height of the stiffener is less than the length of the stiffener, the shape of the stiffener significantly affects the plastic capacity. Based on the numerical and experimental results, it is recommended to use the triangular shape of the stiffener when height is equal to or higher than the length of the stiffener while it is recommended to utilize the rectangular shape of the stiffener when height is less than the length of the stiffener.

Analytical Study on Hydroelastic Vibration of Stiffened Plate for a Rectangular Tank (사각형 탱크 보강판의 유체구조 연성진동에 대한 이론적 인구)

  • Kim, K.S.;Kim, D.W.;Lee, Y.B.;Choi, B.H.;Choi, S.H.;Kim, Y.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.65-68
    • /
    • 2005
  • In this paper, a theoretical study is carried out on the hydroelastic vibration of a rectangular tank wall. It is assumed that the tank wall is clamped along the plate edges. The fluid velocity potential is used for the simulation of fluid domain and to obtain the added mass due to wall vibration. In addition, the vibration characteristics of stiffened wall of the rectangular tank are investigated. Assumed mode method is utilized to the stiffened plate model and hydrodynamic force is obtained by the proposed approach. The coupled natural frequencies are obtained from the relationship between kinetic energies of a wall including fluid and the potential energy of the wall. The theoretical result is compared with the three-dimensional finite element method and then added mass effect is discussed due to tank length and potential mode.

  • PDF

Crack growth behavior in the lntegrally stiffened plates(1) -Numerical evaluation of SIF (일체형 보강판의 균열성장거동(I)-SIF의 수치해석)

  • Rhee, Hwan-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.5
    • /
    • pp.150-156
    • /
    • 1997
  • Three dimensional finite element analysis was conducted to estimate the effect of shape parameters (plate width and thickness) on the stress intensity factor for crack in the integrally stiffened plate. Analysis was done for width ratios of 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, and thickness ratios of 2, 3, 4, 6. Based on these results, an empirical equation of geometry factor is formulated as a function of crack length and thickness ratio.

  • PDF