Browse > Article
http://dx.doi.org/10.12989/scs.2022.44.4.489

The effects of stiffener configuration on stiffened T-stubs  

Ozkılic, Yasin Onuralp (Department of Civil Engineering, Necmettin Erbakan University)
Publication Information
Steel and Composite Structures / v.44, no.4, 2022 , pp. 489-502 More about this Journal
Abstract
The stiffeners, also known as ribs, are utilized to increase the resistance of T-stubs. The author's previous studies showed that stiffeners can increase plastic capacity by an average of 1.71 times. A combined experimental and numerical study was undertaken to examine the effects of the stiffener configuration on the behavior of T-stubs. A total of 20 stiffened T-stubs where the shape and angle of stiffeners were considered as the main parameters were tested under monotonic loading. Rectangular, triangular and AISC types of stiffener were tested under monotonic loading. The experimental results indicated that when the height of the stiffener is equal to or higher than the length of the stiffener, the shape of the stiffener does not have an influence on the behavior. A numerical study using the finite element tool ABAQUS was carried out in order to further investigate the effects of the stiffener shapes. In this case, the height is considered less than the length of the stiffener. Moreover, the shape of the stiffeners was investigated with the different thicknesses of the stiffener. The simulation findings revealed that when the height of the stiffener is less than the length of the stiffener, the shape of the stiffener significantly affects the plastic capacity. Based on the numerical and experimental results, it is recommended to use the triangular shape of the stiffener when height is equal to or higher than the length of the stiffener while it is recommended to utilize the rectangular shape of the stiffener when height is less than the length of the stiffener.
Keywords
angle; experimental; numerical; stiffener; shape; T-stub; thickness;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Faralli, A.C., Latour, M., Tan, P.J., Rizzano, G. and Wrobel, P. (2021), "Experimental investigation and modelling of T-stubs undergoing large displacements", J. Construct. Steel Res., 180, 106580. https://doi.org/10.1016/j.jcsr.2021.106580.   DOI
2 Faridmehr, I., Tahir, M.M., Osman, M.H. and Azimi, M. (2020), "Cyclic Behaviour of Fully-Rigid and Semi-Rigid Steel Beamto-Column Connections", J. Steel Struct., 20(2), 365-385. https://doi.org/10.1007/s13296-019-00290-8   DOI
3 Fernandez-Ceniceros, J., Sanz-Garcia, A., Antonanzas-Torres, F. and Martinez-de-Pison, F.J. (2015), "A numerical-informational approach for characterising the ductile behaviour of the T-stub component. Part 1: Refined finite element model and test validation", Eng. Struct., 82, 236-248. https://doi.org/10.1016/j.engstruct.2014.06.048.   DOI
4 Francavilla, A.B., Latour, M., Piluso, V. and Rizzano, G. (2015), "Simplified finite element analysis of bolted T-stub connection components", Eng. Struct., 100, 656-664. https://doi.org/10.1016/j.engstruct.2015.06.029.   DOI
5 Gantes, C.J. and Lemonis, M.E. (2003), "Influence of equivalent bolt length in finite element modeling of T-stub steel connections", Comput. Struct., 81(8), 595-604. https://doi.org/10.1016/S0045-7949(03)00004-X.   DOI
6 Gil, B., Bijlaard, F. and Bayo, E. (2015), "T-stub behavior under out-of-plane bending. II: Parametric study and analytical characterization", Eng. Struct., 98, 241-250. https://doi.org/10.1016/j.engstruct.2015.03.039.   DOI
7 Zhu, X., Wang, P., Liu, M., Tuoya, W. and Hu, S. (2017), "Behaviors of one-side bolted T-stub through thread holes under tension strengthened with backing plate", J. Construct. Steel Res., 134, 53-65. https://doi.org/10.1016/j.jcsr.2017.03.010.   DOI
8 Ozkilic, Y.O. (2021e), "Investigation of the effects of bolt diameter and end-plate thickness on the capacity and failure modes of end-plated beam- to-column connections", Res. Eng. Struct. Mater., http://dx.doi.org/10.17515/resm2021.275st0315.   DOI
9 Ozkilic, Y.O. and Topkaya, C. (2021a), "The plastic and the ultimate resistance of four-bolt extended end-plate connections", J. Construct. Steel Res., 181, 106614. https://doi.org/10.1016/j.jcsr.2021.106614.   DOI
10 Girao Coelho Ana, M., Simoes da Silva, L. and Bijlaard Frans, S.K. (2006), "Finite-Element modeling of the nonlinear behavior of bolted T-stub connections", J. Struct. Eng., 132(6), 918-928. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:6(918).   DOI
11 Massimo, L., Gianvittorio, R., Aldina, S. and da Silva Luis, S. (2014), "Experimental analysis and mechanical modeling of Tstubs with four bolts per row", J. Construct. Steel Res., 101, 158-174. https://doi.org/10.1016/j.jcsr.2014.05.004.   DOI
12 Moradi Garoosi, A., Tahamouli Roudsari, M. and Hosseini Hashemi, B. (2018), "Experimental evaluation of rigid connection with reduced section and replaceable fuse", Structures, 16, 390-404. https://doi.org/10.1016/j.istruc.2018.11.010.   DOI
13 Abidelah, A., Bouchair, A. and Kerdal, D.E. (2014), "Influence of the flexural rigidity of the bolt on the behavior of the T-stub steel connection", Eng. Struct., 81, 181-194. https://doi.org/10.1016/j.engstruct.2014.09.041.   DOI
14 Anwar, G.A. (2017), "Ultimate deformation and resistance capacity of bolted T-stub connections under different loading conditions", M.Sc. Dissertation, Ceske vysoke uceni technicke v Praze, Prague.
15 Anwar, G.A., Dinu, F. and Ahmed, M. (2019), "Numerical study on ultimate deformation and resistance capacity of bolted t-stub connection", J. Steel Struct., 19(3), 970-977. https://doi.org/10.1007/s13296-018-0186-8.   DOI
16 Nemati, N., Le Houedec, D. and Zandonini, R. (2000), "Numerical modelling of the cyclic behaviour of the basic components of steel end plate connections", Adv. Eng. Software, 31(11), 837-849. https://doi.org/10.1016/S0965-9978(00)00046-6.   DOI
17 Nikoukalam, M.T. and Dolatshahi, K.M. (2015), "Development of structural shear fuse in moment resisting frames", J. Construct. Steel Res., 114, 349-361. https://doi.org/10.1016/j.jcsr.2015.08.008.   DOI
18 Ozkilic, Y.O. (2021a), "Optimized stiffener detailing for shear links in eccentrically braced frames", Steel Compos. Struct., 39(1), 35-50. http://dx.doi.org/10.12989/scs.2021.39.1.035.   DOI
19 Ozkilic, Y.O. (2021b), "The capacities of thin plated stiffened Tstubs", J. Construct. Steel Res., 186, 106912. https://doi.org/10.1016/j.jcsr.2021.106912.   DOI
20 Ozkilic, Y.O. (2021c), "The capacities of unstiffened T-stubs with thin plates and large bolts", J. Construct. Steel Res., 186, 106908. https://doi.org/10.1016/j.jcsr.2021.106908.   DOI
21 Ozkilic, Y.O. and Topkaya, C. (2021b), "Extended End-Plate Connections for Replaceable Shear Links", Eng. Struct., 240, 112385 https://doi.org/10.1016/j.engstruct.2021.112385   DOI
22 Tartaglia, R., D'Aniello, M., Rassati, G.A., Swanson, J.A. and Landolfo, R. (2018), "Full strength extended stiffened end-plate joints: AISC vs recent European design criteria", Eng. Struct., 159, 155-171. https://doi.org/10.1016/j.engstruct.2017.12.053.   DOI
23 Wang, M., Dong, K. and Liu, M. (2020), "Damage control mechanism and seismic performance of a steel moment connection with replaceable low-yield-point steel double T-stub fuses", Thin-Walled. Struct., 157, 107143. https://doi.org/10.1016/j.tws.2020.107143.   DOI
24 Yuan, H.X., Hu, S., Du, X.X., Yang, L., Cheng, X.Y. and Theofanous, M. (2019), "Experimental behaviour of stainless steel bolted T-stub connections under monotonic loading", J. Construct. Steel Res., 152, 213-224. https://doi.org/10.1016/j.jcsr.2018.02.021.   DOI
25 Zhang, Y., Liu, M., Ma, Q., Liu, Z., Wang, P., Ma, C. and Sun, L. (2020), "Yield line patterns of T-stubs connected by threadfixed one-side bolts under tension", J. Construct. Steel Res., 166, 105932. https://doi.org/10.1016/j.jcsr.2020.105932.   DOI
26 Zhao, M.S., Lee, C.K. and Chiew, S.P. (2016), "Tensile behavior of high performance structural steel T-stub joints", J. Construct. Steel Res., 122, 316-325. https://doi.org/10.1016/j.jcsr.2016.04.001.   DOI
27 Ozkilic, Y.O. (2021d), "A comparative study on yield line mechanisms for four bolted extended end-plated connection", Challenge J. Struct. Mech., 7(2), https://doi.org/10.20528/cjsmec.2021.02.005.   DOI
28 Zhao, X., He, S. and Yan, S. (2021), "Full-range behaviour of Tstubs with various yield line patterns", J. Construct. Steel Res., 186, 106919. https://doi.org/10.1016/j.jcsr.2021.106919.   DOI
29 Zhu, C., Rasmussen Kim, J.R., Yan, S. and Zhang, H. (2019), "Experimental Full-Range Behavior Assessment of Bolted Moment End-Plate Connections", J. Struct. Eng., 145(8), 04019079.   DOI
30 Bezerra, L.M., Bonilla, J., Silva, W.A. and Matias, W.T. (2020), "Experimental and numerical studies of bolted T-stub steel connection with different flange thicknesses connected to a rigid base", Eng. Struct., 218, 110770. https://doi.org/10.1016/j.engstruct.2020.110770.   DOI
31 Bouchair, A., Averseng, J. and Abidelah, A. (2008), "Analysis of the behaviour of stainless steel bolted connections", J. Construct. Steel Res., 64(11), 1264-1274. https://doi.org/10.1016/j.jcsr.2008.07.009.   DOI
32 Bozkurt Mehmet, B., Kazemzadeh Azad, S. and Topkaya, C. (2018), "Low-Cycle fatigue testing of shear links and calibration of a damage law", J. Struct. Eng., 144(10), 04018189. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002192   DOI
33 Bozkurt, M.B., Kazemzadeh Azad, S. and Topkaya, C. (2019), "Development of detachable replaceable links for eccentrically braced frames", Earthq. Eng. Struct. Dynam., 48(10), 1134-1155.   DOI
34 Faralli, A.C., Tan, P.J., McShane, G.J. and Wrobel, P. (2020), "Deformation Maps for Bolted T-Stubs", J. Struct. Eng., 146(5), 04020045. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002584   DOI
35 Liang, G., Guo, H., Liu, Y. and Li, Y. (2018), "Q690 high strength steel T-stub tensile behavior: Experimental and numerical analysis", Thin-Walled. Struct.,122, 554-571. https://doi.org/10.1016/j.tws.2017.10.042.   DOI
36 Loureiro, A., Gutierrez, R., Reinosa, J.M. and Moreno, A. (2010), "Axial stiffness prediction of non-preloaded T-stubs: An analytical frame approach", J. Construct. Steel Res., 66(12), 1516-1522. https://doi.org/10.1016/j.jcsr.2010.06.005.   DOI
37 Mahmoudi, F., Dolatshahi, K.M., Mahsuli, M., Nikoukalam, M.T. and Shahmohammadi, A. (2019), "Experimental study of steel moment resisting frames with shear link", J. Construct. Steel Res., 154, 197-208. https://doi.org/10.1016/j.jcsr.2018.11.027.   DOI
38 Murray, T.M. and Sumner, E.A. (2003), Design Guide 4: Extended end-plate moment connections: Seismic and wind applications, American Institute of Steel Construction; Chicago, USA.
39 Francavilla, A.B., Latour, and Rizzano, G. (2022), "Ultimate behaviour of bolted T-stubs under large displacements: A mechanical model", J. Construct. Steel Res., 195, 107355. https://doi.org/10.1016/j.jcsr.2022.107355.   DOI
40 Ozkilic, Y.O. (2020), "A new replaceable fuse for moment resisting frames: Replaceable bolted reduced beam section connections", Steel Compos. Struct., 35(3), 353-370. http://dx.doi.org/10.12989/scs.2020.35.3.353.   DOI
41 Ozkilic, Y.O., Bozkurt, M.B. and Topkaya, C. (2021), "Midspliced end-plated replaceable links for eccentrically braced frames", Eng. Struct., 237, 112225. https://doi.org/10.1016/j.engstruct.2021.112225.   DOI
42 Piluso, V. and Rizzano, G. (2008), "Experimental analysis and modelling of bolted T-stubs under cyclic loads", J. Construct. Steel Res., 64(6), 655-669. https://doi.org/10.1016/j.jcsr.2007.12.009.   DOI
43 Piluso, V., Faella, C. and Rizzano, G. (2001), "Ultimate behavior of bolted T-Stubs. II: Model validation", J. Struct. Eng., 127(6), 694-704. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:6(694).   DOI
44 Saberi, V., Gerami, M. and Kheyroddin, A. (2014), "Comparison of bolted end plate and T-stub connection sensitivity to component thickness", J. Construct. Steel Res., 98, 134-145. https://doi.org/10.1016/j.jcsr.2014.02.012.   DOI
45 Wulan, T., Wang, P., Li, Y., You, Y. and Tang, F. (2018), "Numerical investigation on strength and failure modes of thread-fixed one-side bolted T-stubs under tension", Eng. Struct., 169, 15-36. https://doi.org/10.1016/j.engstruct.2018.05.029.   DOI
46 Yorgun, C. (2002), "Evaluation of innovative extended end-Plate moment connections under cyclic loading", Turkish J. Eng. Environ. Sci., 26(6), 483-492.
47 Gil, B. and Goni, R. (2015), "T-stub behaviour under out-of-plane bending. I: Experimental research and finite element modelling", Eng. Struct., 98, 230-240. https://doi.org/10.1016/j.engstruct.2015.03.041.   DOI
48 Girao Coelho, A.M., Bijlaard, F.S.K. and Simoes da Silva, L. (2004), "Experimental assessment of the ductility of extended end plate connections", Eng. Struct., 26(9), 1185-1206. https://doi.org/10.1016/j.engstruct.2000.09.001.   DOI
49 Girao Coelho, A.M., Bijlaard, F.S.K., Gresnigt, N. and Simoes da Silva, L. (2004), "Experimental assessment of the behaviour of bolted T-stub connections made up of welded plates", J. Construct. Steel Res., 60(2), 269-311. https://doi.org/10.1016/j.jcsr.2003.08.008.   DOI
50 Godrich, L., Wald, F., Kabelac, J. and Kurikova, M. (2019), "Design finite element model of a bolted T-stub connection component", J. Construct. Steel Res., 157, 198-206. https://doi.org/10.1016/j.jcsr.2019.02.031.   DOI
51 Gong, Y. (2014), "Ultimate tensile deformation and strength capacities of bolted-angle connections", J. Construct. Steel Res., 100, 50-59. https://doi.org/10.1016/j.jcsr.2014.04.029.   DOI
52 Guo, H., Liang, G., Li, Y. and Liu, Y. (2017), "Q690 high strength steel T-stub tensile behavior: Experimental research and theoretical analysis", J. Construct. Steel Res., 139, 473-483.   DOI
53 Kong, Z. and Kim, S.-E. (2018), "Numerical estimation for initial stiffness and ultimate moment of T-stub connections", J. Construct. Steel Res., 141, 118-131.   DOI
54 Sebbagh, H.R., Kerdal, D.E.D., Abidelah, A. and Bouchair, A. (2021), "T-stubs with two and four bolts under monotonic and cyclic loading", J. Construct. Steel Res., 178, 106486. https://doi.org/10.1016/j.jcsr.2020.106486.   DOI
55 Abidelah, A., Bouchair, A. and Kerdal, D.E. (2012), "Experimental and analytical behavior of bolted end-plate connections with or without stiffeners", J. Construct. Steel Res., 76, 13-27. https://doi.org/10.1016/j.jcsr.2012.04.004.   DOI
56 Seo, J., Hu, J.W. and Kim, K.H.J.M. (2017), "Analytical investigation of the cyclic behavior of smart recentering T-Stub components with superelastic SMA bolts", 7(10), 386. https://doi.org/10.3390/met7100386.   DOI
57 Stephens, M.T., Dusicka, P. and Lewis, G. (2018), "End web stiffeners for connecting ductile replaceable links", J. Construct. Steel Res., 150, 405-414. https://doi.org/10.1016/j.jcsr.2018.08.037.   DOI
58 Sutherland, B.C. (2016), "Analysis of Bolted Beam-Column Connections with Multiple Bolts per Row and Column Web Stiffeners", B.Sc. Dissertation, University of Arkansas, USA.
59 Kurcik, F., Bouchair, A. and Vican, J. (2008), "A probabilistic approach for a T-stub ultimate strength assessment using response-surface approximation", Periodica Polytechnica Civil Eng., 52(1), 15-22. https://doi.org/10.3311/pp.ci.2008-1.02.   DOI
60 Tartaglia, R., D'Aniello, M. and Landolfo, R. (2018), "The influence of rib stiffeners on the response of extended end-plate joints", J. Construct. Steel Res., 148, 669-690. https://doi.org/10.1016/j.jcsr.2018.06.025.   DOI
61 Brown, D., Iles, D., Brettle, M., Malik, A. and Group, B.S.C. (2013), "Joints in Steel Construction: Moment-Resisting Joints to Eurocode 3", J. Steel Struct., 19(3), 970-977. https://doi.org/10.1007/s13296-018-0186-8.   DOI
62 Chen, C., Zhang, X., Zhao, M., Lee, C.-K., Fung, T.-C. and Chiew, S.-P. (2017), "Effects of Welding on the Tensile Performance of High Strength Steel T-stub Joints", Structures, 9, 70-78. https://doi.org/10.1016/j.istruc.2016.09.008.   DOI
63 D'Aniello, M. Cassiano, D. and Landolfo, R. (2017), "Simplified criteria for finite element modelling of European preloadable bolts", Steel Compos. Struct., 24(6) 643-658. https://doi.org/10.12989/scs.2017.24.6.643.   DOI
64 EN 1993-1-8 (2005), Eurocode 3: Design of steel structures, Part 1.8: Design of joints, European Committee for Standardization; Brussels, Belgium.
65 Tartaglia, R., D'Aniello, M. and Rassati, G.A. (2019), "Proposal of AISC-compliant seismic design criteria for ductile partiallyrestrained end-plate bolted joints", J. Construct. Steel Res., 159, 364-383. https://doi.org/10.1016/j.jcsr.2019.05.006.   DOI
66 Tartaglia, R., D'Aniello, M. and Zimbru, M. (2020), "Experimental and numerical study on the T-Stub behaviour with preloaded bolts under large deformations", Structures, 27, 2137-2155. https://doi.org/10.1016/j.istruc.2020.08.039.   DOI
67 Timmers, R. (2021), "Generalized method for identifying yieldline patterns in T-stubs using discontinuity layout optimization", Eng. Struct., 244, 112802. https://doi.org/10.1016/j.engstruct.2021.112802.   DOI
68 Vatansever, C. and Kutsal, K. (2018), "Effect of bolted splice within the plastic hinge zone on beam-to-column connection behavior", Steel Compos. Struct., 28(6), 767-778. https://doi.org/10.12989/scs.2018.28.6.767.   DOI
69 AISC, A. (2016), Prequalified connections for special and intermediate steel moment frames for seismic applications, American Institute of Steel Construction (AISC); Chicago, USA.