• Title/Summary/Keyword: stem flow

Search Result 230, Processing Time 0.021 seconds

Expression of Ion Channels in Perivascular Stem Cells derived from Human Umbilical Cords

  • Kim, Eunbi;Park, Won Sun;Hong, Seok-Ho
    • Development and Reproduction
    • /
    • v.21 no.1
    • /
    • pp.11-18
    • /
    • 2017
  • Potassium channels, the largest group of pore proteins, selectively regulate the flow of potassium ($K^+$) ions across cell membranes. The activity and expression of $K^+$ channels are critical for the maintenance of normal functions in vessels and neurons, and for the regulation of cell differentiation and maturation. However, their role and expression in stem cells have been poorly understood. In this study, we isolated perivascular stem cells (PVCs) from human umbilical cords and investigated the expression patterns of big-conductance $Ca^{2+}$-activated $K^+$ ($BK_{Ca}$) and voltage-dependent $K^+$ ($K_v$) channels using the reverse transcription polymerase chain reaction. We also examined the effect of high glucose (HG, 25 mM) on expression levels of $BK_{Ca}$ and $K_v$ channels in PVCs. $K_{Ca}1.1$, $K_{Ca}{\beta}_3$, $K_v1.3$, $K_v3.2$, and $K_v6.1$ were detected in undifferentiated PVCs. In addition, HG treatment increased the amounts of $BK_{Ca}{\beta}_{3a}$, $BK_{Ca}{\beta}_4$, $K_v1.3$, $K_v1.6$, and $K_v6.1$ transcripts. These results suggested that ion channels may have important functions in the growth and differentiation of PVCs, which could be influenced by HG exposure.

Effects of Human Adipose-Derived Stem Cells on the Survival of Rabbit Ear Composite Grafts

  • Kim, Chae Min;Oh, Joo Hyun;Jeon, Yeo Reum;Kang, Eun Hye;Lew, Dae Hyun
    • Archives of Plastic Surgery
    • /
    • v.44 no.5
    • /
    • pp.370-377
    • /
    • 2017
  • Background Composite grafts are frequently used for facial reconstruction. However, the unpredictability of the results and difficulties with large defects are disadvantages. Adipose-derived stem cells (ADSCs) express several cytokines, and increase the survival of random flaps and fat grafts owing to their angiogenic potential. Methods This study investigated composite graft survival after ADSC injection. Circular chondrocutaneous composite tissues, 2 cm in diameter, from 15 New Zealand white rabbits were used. Thirty ears were randomly divided into 3 groups. In the experimental groups (1 and 2), ADSCs were subcutaneously injected 7 days and immediately before the operation, respectively. Similarly, phosphate-buffered saline was injected in the control group just before surgery in the same manner as in group 2. In all groups, chondrocutaneous composite tissue was elevated, rotated 90 degrees, and repaired in its original position. Skin flow was assessed using laser Doppler 1, 3, 6, 9, and 12 days after surgery. At 1 and 12 days after surgery, the viable area was assessed using digital photography; the rabbits were euthanized, and immunohistochemical staining for CD31 was performed to assess neovascularization. Results The survival of composite grafts increased significantly with the injection of ADSCs (P<0.05). ADSC injection significantly improved neovascularization based on anti-CD31 immunohistochemical analysis and vascular endothelial growth factor expression (P<0.05) in both group 1 and group 2 compared to the control group. No statistically significant differences in graft survival, anti-CD31 neovascularization, or microcirculation were found between groups 1 and 2. Conclusions Treatment with ADSCs improved the composite graft survival, as confirmed by the survival area and histological evaluation. The differences according to the injection timing were not significant.

Persistence of Stem-like Cells in Glandular Structures in Mammary Cell Grafts (유선상피세포 이식편으로부터 생성된 유선구조물 내의 상피간세포 지속성 연구)

  • ;;Kelly H. Clifton
    • Journal of Life Science
    • /
    • v.10 no.1
    • /
    • pp.22-36
    • /
    • 2000
  • The mammary gland contains a subpopulation of epithelial cells with large proliferative potentials which are the likely targets for carcinogens. These clonogenic cells can proliferate and differentiate into functional glandular structures. Multicellular secretory alveolar units (AU) develop from these clonogens in grafts of monodispersed rat mammary epithelial cells (RMEC) in gland-free mammary fat pads in intact recipient F344 rats co-grafted with mammotropic hormone-secreting pituitary tumors (MtT F4). Multicellular nonsecretory ductal units (DU) develop in grafts of monodispersed RMEC in gland-free fat pads in adrenalectomized recipient WF rats co-grafted with MtT W10. However, this effect were reversed by hydrocortisone replacement therapy. RMEC were isolated from appropriate donor rats as monodispersed mixed cells or, alternatively, RNA+ cells were sorted by flow cytometry of mixed RMEC stained with FITC-RNA and PE-anti-Thy-1.1 monoclonal antibody. We grafted mixed or sorted PNA+ cells in gland-free mammary fat pads in recipient rats that were endocrinologically manipulated to induce AU or DU. Cells were also isolated from these AU or DU as mixed or sorted RNA+ cells and sub-transplanted in recipient rats treated appropriately to induce AU or DU, respectively. Cells obtained from AU in grafts gave rise to clonal AU and from DU in grafts to DU on sub-transplantation in appropriate recipients. When adrenalectomized recipient WF rats co-grafted with MtT W10 received daily subcutaneous injections of hydrocortisone for periods of 21 days following the PHA+ cell transplantation, AU, instead of DU, were developed. The histologies of these secondary AU and DU were not different from those of the primary AU and DU. Casein and laminin proteins were demonstrated by immunocytochemical staining of primary and secondary AU. Electron micrographs also demonstrated that AU were composed of secretory cells with milk protein in the cytoplasm. DU were composed of little or non-secretory ductal epithelial cells. These AU and DU also secreted large amounts of lipids. Clonogenic cells were more common in DU than in AU. Thus, AU and DU contain persistent subpopulations of clonogenic stem-like cells.

  • PDF

Isolation and characterization of feline endometrial mesenchymal stem cells

  • Mi-Kyung Park;Kun-Ho Song
    • Journal of Veterinary Science
    • /
    • v.25 no.2
    • /
    • pp.31.1-31.8
    • /
    • 2024
  • Background: Recently, there has been a growing interest in stem cells for human medicine. Limited feline endometrial mesenchymal stem cell (fEM-MSC) research in veterinary medicine necessitates reporting for future feline disease research and therapy. Objectives: This study aimed to isolate fEM-MSCs from feline endometrial tissues and evaluate their morphology, proliferative ability, differentiation ability, and immunophenotype. Methods: Feline endometrial tissues were obtained from the ovariohysterectomies of healthy cats and isolated using an enzymatic method. The morphology and proliferative ability of the isolated cells were assessed using a doubling time (DT) assay from passages 3 to 6 (P3 - P6). We measured pluripotency gene expressions of cells in P2 using quantitative real-time polymerase chain reaction (qRT-PCR). To investigate MSC characteristics, a trilineage differentiation assay was conducted in P4, and cells in P4 were immunophenotyped using flow cytometry. Results: fEM-MSCs showed a typical spindle-shaped morphology under a microscope, and the DT was maintained from P3 to P6. fEM-MSCs could differentiate into adipocytes, osteoblasts, and chondrocytes, and expressed three pluripotency markers (OCT4, SOX2, and NANOG) by qRT-PCR. Immunophenotypic analysis showed that the fEM-MSCs were CD14 -, CD34 -, CD45 -, CD9+, and CD44+. Conclusions: In this study, the feline endometrium was a novel source of MSCs, and to the best of our knowledge, this is the first report on the isolation method and characteristics of fEM-MSCs.

A Numerical Analysis on High Pressure Control Valve for Offshore (해양구조물용 고압 컨트롤 밸브 수치해석)

  • Yi, Chung-Seub;Jang, Sung-Cheol;Jeong, Hwi-Won;Nam, Tae-Hee
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1195-1200
    • /
    • 2008
  • This study have goal with conceptual design for Offshore Structures of high pressure control valve for localization. Ball valve for development accomplished with flow analysis based on provision of ANSI B16.34, ANSI B16.10, ANSI B16.25 In order to localize the Offshore Structures high pressure control valve. Numerical simulation using CFD(Computational Fluid Dynamic) in order to predict a mass flow rate and a flow coefficient form flow dynamic point of view. The working fluid assumed the glycerin($C_3H_8O_3$). The valve inlet and outlet setup a pressure boundary condition. The outlet pressure was fixed by atmospheric pressure and calculated until increasing 1bar to 10bar. CFD analysis used STAR-CCM+ which is commercial code and Governing equations were calculated by moving mesh which is rotated 90 degrees when ball valve operated opening and closing in 1 degree interval. The result shows change of mass flow rate according to opening and closing angle of valve. Flow decrease observed open valve that equal percentage flow paten which is general inclination of ball valve. Relation with flow and flow coefficient can not be proportional according to inlet pressure when compare with mass flow rate. Because flow coefficient have influence in flow and pressure difference. Namely, flow can be change even if it has same Cv value. The structural analysis used ANSYS which is a commercial code. Stress analysis result of internal pressure in valve showed lower than yield strength. This is expect to need more detail design and verification for stem and seat structure.

  • PDF

Effect of Air Flow During Curing Process on Physical Properties of Bulk Cured Leaves (황색종 Bulk건조시 송풍량 조절에 따른 건조엽의 물리성 변화)

  • 이철환;진정의;한철수
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.21 no.1
    • /
    • pp.5-9
    • /
    • 1999
  • In recent years, the line of increase in policy on tobacco production triggered a rise in the loading volume per bulk curing barn, and manufacturers boosted the output of their blowers in order to prevent dirty leaves in the process of curing. for this reason, we studied the effect of the reducing air flow in bulk curing chamber from the color fixing stage to the stem drying stage of flue curing process on physical properties of cured leaves. The control of air flow was composed of the reducing air velocity of blower by means of a voltage regulator (slidac), and condition before color fixing stage was all the same with the conventional curing method. As a result, an effectiveness of improvement in the physical properties of cured leaves were observed. The leaves cured by this method were somewhat orange in color of upper stalk position, better bodied, and less brittle compared with the leaves produced by conventional curing. However, the leaves cured by this method had a little sharpness and harshness. As to the physical properties, there was decreased in occurrence of flat leaves than that of conventional ones. On the other hand, in case of reducing air flow during the curing process, increase of price per kg reached to about 5 % compared with those of conventional curing method.

  • PDF

Cytotoxicity of Various Calcium Silicate-based Materials with Stem Cells from Deciduous Teeth (유치 줄기세포에 대한 다양한 규산칼슘계 재료의 세포독성)

  • Yun, Jihye;You, Yong-Ouk;Ahn, Eunsuk;Lee, Jun;An, So-Youn
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.46 no.1
    • /
    • pp.85-92
    • /
    • 2019
  • The purpose of this study was to compare and evaluate the cytotoxicity of 3 calcium silicate-based materials (CSMs) on stem cells from human exfoliated deciduous teeth (SHEDs). The powder of Retro $MTA^{(R)}$ (RM), $EZ-Seal^{TM}$ (EZ) and ENDOCEM $Zr^{(R)}$ (EN) was eluted with SHED culture media and then filtered. The SHEDs were cultured in the presence of the various concentrations of the eluate. To investigate the effect of the 3 CSMs on SHED proliferation, the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay was performed. Flow cytometry analysis was also performed to identify any changes in the cellular phenotype. The absorbance values of the SHEDs cultured in the eluate of samples at a 10% concentration showed the following relation: RM > EN > EZ (p = 0.0439). However, the SHEDs maintained their mesenchymal phenotype regardless of product exposure. Although the 3 CSMs did not alter the SHED stem cell markers, EZ may be a less cytocompatible than RM and EN.

Flow Rate Control System Design for the Industrial Valve (산업용 밸브의 유량제어 시스템 설계)

  • Choi, Jeongju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.387-392
    • /
    • 2020
  • This paper proposes a flow-rate control system for industrial valves. Industrial valves are used in piping systems to control the flow rate and pressure. In general, valves used in pipelines are classified into globe valves, butterfly valves, and ball valves according to the shape. Motor, hydraulic, and pneumatic systems are used for operating valves. The flow meter should measure the flow rate when configuring the flow-rate control system. On the other hand, because the flow rate of the valve can be expressed by flow coefficient, a control scheme is proposed using the pressure deviation, which measures at the front and rear of the valve. The transfer function for the valve, according to the control input, was estimated using the signal compression method. Based on the induced transfer function, the disturbance observer was designed to improve the command following the performance of the valve stem. The performance of the proposed control method is compared with the flow-rate control result using the flow meter used.

Chemical Characteristics of Rain Water at Ulsan Industrial Complex Area and Mt. Jiri Area (울산공단지역과 지리산지역 강우의 화학적 특성)

  • Seo, Dong-Jin;Yun, Seok-Lak;Moon, Hyeon-Sik;Lee, Chong-Gyu;Kim, Jong-Kab
    • Journal of agriculture & life science
    • /
    • v.44 no.6
    • /
    • pp.15-22
    • /
    • 2010
  • This study was carried out to investigate the characteristics of ions in rainwater by stem flow, through fall and rainfall in Pinus thunbergii forest in Ulsan industrial complex area and Mt. Jiri area. pH of rainwater in Ulsan industrial complex area was low as compared with those in Mt. Jiri area. EC of rainwater in Ulsan industrial complex area was mainly high and there was twice difference in stemflow and through fall as compared to Mt. Jiri area. The concentration of major ions in rainwater, especially $Ca^{2+}$ and $Mg^{2+}$ in stem flow were generally high at Ulsan industrial complex area, while anions were high in the order of ${SO_4}^{2-}>{NO_3}^{-}>Cl^-$ in both areas. There was a wide difference in ${SO_4}^{2-}$ concentration in the stem flow between both areas. ${SO_4}^{2-}$ from air pollutants will result into acidification of forest soils and thereafter cause damages on forest ecosystems.

Establishment of Functional Cells for Vascular Defect Disease from Human Embryonic Stem Cell via Region Sorting Depending on Cell Volume (세포 크기 차이를 이용한 유세포 분석을 통한 인간배아줄기세포 유래 기능성 혈관세포의 확립)

  • Lee, Ji-Hye;Kim, Ju-Mi;Chung, Hyung-Min;Chae, Jung-Il
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.4
    • /
    • pp.364-373
    • /
    • 2011
  • Human embryonic stem cells have been highlighted as a valuable cellular source in the regenerative medicine field, due to their pluripotency. However, there is the challenge of the establishment of specific functional cell type forms of undifferentiated human embryonic stem cells (hESC). To establish and purify functional cell types from hESCs, we differentiated undifferentiated hESCs into vascular lineage cells and sorted the specific cell population from the whole cell population, depending on their cell volume, and compared them with the non-sorted cell population. We observed that about 10% of the PECAM positive population existed in the VEGF induced differentiating human embryoid body (hEB), and differentiated hEBs were made into single cells for cell transplantation. After making single cells, we performed cell sorting using a fluorescence-activated cell sorter (FACs), according to their cell volume on the basis of FSC region gating, and compared their therapeutic capacity with the non-sorted cell population through cell transplantation into hindlimb ischemic disease model mice. 4 Weeks after cell transplantation, the recovery rate of blood perfusion reached 54% and 17% in the FSC regions of sorted cells- and non-sorted cells, respectively. This result suggests that derivation of a functional cell population from hESCs can be performed through cell sorting on the basis of cell volume after preliminary differentiation induction. This approach may then greatly contribute to overcoming the limitations of marker sorting.