Browse > Article

Establishment of Functional Cells for Vascular Defect Disease from Human Embryonic Stem Cell via Region Sorting Depending on Cell Volume  

Lee, Ji-Hye (Graduate School of Life Science, CHA Stem Cell Institute, College of Medicine, CHA University)
Kim, Ju-Mi (CHA Bio & Diostech Co., Ltd.)
Chung, Hyung-Min (Graduate School of Life Science, CHA Stem Cell Institute, College of Medicine, CHA University)
Chae, Jung-Il (Department of Dental Pharmacology, School of Dentistry, Brain Korea 21 Project, Chonbuk National University)
Publication Information
Microbiology and Biotechnology Letters / v.39, no.4, 2011 , pp. 364-373 More about this Journal
Abstract
Human embryonic stem cells have been highlighted as a valuable cellular source in the regenerative medicine field, due to their pluripotency. However, there is the challenge of the establishment of specific functional cell type forms of undifferentiated human embryonic stem cells (hESC). To establish and purify functional cell types from hESCs, we differentiated undifferentiated hESCs into vascular lineage cells and sorted the specific cell population from the whole cell population, depending on their cell volume, and compared them with the non-sorted cell population. We observed that about 10% of the PECAM positive population existed in the VEGF induced differentiating human embryoid body (hEB), and differentiated hEBs were made into single cells for cell transplantation. After making single cells, we performed cell sorting using a fluorescence-activated cell sorter (FACs), according to their cell volume on the basis of FSC region gating, and compared their therapeutic capacity with the non-sorted cell population through cell transplantation into hindlimb ischemic disease model mice. 4 Weeks after cell transplantation, the recovery rate of blood perfusion reached 54% and 17% in the FSC regions of sorted cells- and non-sorted cells, respectively. This result suggests that derivation of a functional cell population from hESCs can be performed through cell sorting on the basis of cell volume after preliminary differentiation induction. This approach may then greatly contribute to overcoming the limitations of marker sorting.
Keywords
human embryonic stem cell; flow cytometry; cell sorting; hind limb ischemia;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Wang, Z. Z., P. Au, T. Chen, Y. Shao, L. M. Daheron, H. Bai et al. 2007. Endothelial cells derived from human embryonic stem cells form durable blood vessels in vivo. Nat Biotechnol. 25: 317-318.   DOI   ScienceOn
2 Yamahara, K., M. Sone, H. Itoh, J. K. Yamashita, T. Yurugi- Kobayashi, K. Homma et al. 2008. Augmentation of neovascularizaiton in hindlimb ischemia by combined transplantation of human embryonic stem cells-derived endothelial and mural cells. PLoS ONE 3: e1666.   DOI
3 Ornatsky, O., D. Bandura, V. Baranov, M. Nitz, M. A. Winnik, and S. Tanner. Highly multiparametric analysis by mass cytometry. J. Immunol. Methods 361: 1-20.
4 Qian, Y., C. Wei, E.-H. Lee, F. Campbell, J. Halliley, J. Lee et al. 2010. Elucidation of seventeen human peripheral blood B-cell subsets and quantification of the tetanus response using a density-based method for the automated identification of cell populations in multidimensional flow cytometry data. Cytometry Part B: Clinical Cytometry 78B.
5 Fulwyler, M. J. 1965. Electronic separation of biological cells by volume. Science 150: 910-911.   DOI
6 Thomson, J. A., J. Itskovitz-Eldor, S. S. Shapiro, M. A. Waknitz, J. J. Swiergiel, V. S. Marshall et al. 1998. Embryonic stem cell lines derived from human blastocysts. Science 282: 1145-1147.   DOI
7 Wang, L. 2006. Endothelial and hematopoietic cell fate of human embryonic stem cells. Trends Cardiovasc. Med. 16: 89-94.   DOI   ScienceOn
8 Wang, L., L. Li, F. Shojaei, K. Levac, C. Cerdan, P. Menen dez et al. 2004. Endothelial and hematopoietic cell fate of human embryonic stem cells originates from primitive endothelium with hemangioblastic properties. Immunity 21: 31-41.   DOI   ScienceOn
9 Kim, J., S. H. Moon, S. H. Lee, D. R. Lee, G. Y. Koh, and H. M. Chung. 2007. Effective isolation and culture of endothelial cells in embryoid body differentiated from human embryonic stem cells. Stem Cells Dev. 16: 269-280.   DOI   ScienceOn
10 Klimanskaya, I., Y. Chung, S. Becker, S. J. Lu, and R. Lanza. 2006. Human embryonic stem cell lines derived from single blastomeres. Nature 444: 481-485.   DOI   ScienceOn
11 Lu, S. J., Q. Feng, S. Caballero, Y. Chen, M. A. Moore, M. B. Grant et al. 2007. Generation of functional hemangioblasts from human embryonic stem cells. Nat. Methods 4: 501-509.   DOI   ScienceOn
12 Layman, H., M. Sacasa, A. E. Murphy, A. M. Murphy, S. M. Pham, and F. M. Andreopoulous. 2008 Co-delivery of FGF-2 and G-CSF from gelatin-based hydrogels as angiogenic therapy in a murine critical limb ischemic model.Co-delivery of FGF-2 and G-CSF from gelatin-based hydrogels as angiogenic therapy in a murine critical limb ischemic model. Acta Biomater. 5: 230-239.
13 Levenberg, S., J. S. Golub, M. Amit, J. Itskovitz-Eldor, and R. Langer. 2002. Endothelial cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. U S A 99: 4391- 4396.   DOI   ScienceOn
14 Loges, S., C. Roncal, and P. Carmeliet. 2009. Development of targeted angiogenic medicine. J. Thromb. Haemost. 7: 21- 33.
15 Mr, L. 1999. Immunofluorescence Techniques in Flow Cytometry and Sorting Wiley: 341-353.
16 Boyd, N. L., S. K. Dhara, R. Rekaya, E. A. Godbey, K. Hasneen, R. R. Rao et al. 2007. BMP4 promotes formation of primitive vascular networks in human embryonic stem cellderived embryoid bodies. Exp. Biol. Med. (Maywood) 232: 833-843.
17 Drukker, M., H. Katchman, G. Katz, S.Even-Tov. Friedman, E. Shezen, E. Hornstein et al. 2006. Human embryonic stem cells and their differentiated derivatives are less susceptible to immune rejection than adult cells. Stem Cells. 24: 221- 229.   DOI   ScienceOn
18 Byrne, A. M., B.-H. D., Harmey J. H. 2005 Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). J. Cell. Mol. Med. 9: 777-794.   DOI   ScienceOn
19 Cho, S. W., S. H. Moon, S. H. Lee, S. W. Kang, J. Kim, J. M. Lim et al. 2007. Improvement of postnatal neovascularization by human embryonic stem cell derived endotheliallike cell transplantation in a mouse model of hindlimb ischemia. Circulation 116: 2409-2419.   DOI   ScienceOn
20 Deb, K. D. and K. Sarda. 2008. Human embryonic stem cells: preclinical perspectives. J. Transl. Med. 6: 7.   DOI
21 Dvash, T., D. Ben-Yosef, and R. Eiges. 2006. Human embryonic stem cells as a powerful tool for studying human embryogenesis. Pediatr. Res. 60: 111-117.   DOI   ScienceOn
22 Ferreira, L. S., S. Gerecht, J. Fuller, H. F. Shieh, G. Vunjak- Novakovic, and R. Langer. 2007. Bioactive hydrogel scaffolds for controllable vascular differentiation of human embryonic stem cells. Biomaterials 28: 2706-2717.   DOI   ScienceOn
23 Asahara, T., T. Murohara, A. Sullivan, M. Silver, R. van der Zee, T. Li et al. 1997. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275: 964-967.   DOI   ScienceOn
24 Ahn, S. E., S. Kim, K. H. Park, S. H. Moon, H. J. Lee, G. J. Kim et al. 2006. Primary bone-derived cells induce osteogenic differentiation without exogenous factors in human embryonic stem cells. Biochem. Biophy. Res. Co. 340: 403- 408.   DOI   ScienceOn
25 Amit, M., M. K. Carpenter, M. S. Inokuma, C. P. Chiu, C. P. Harris, M. A. Waknitz et al. 2000. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev. Biol. 227: 271-278.   DOI   ScienceOn
26 Asahara, T., A. Kawamoto, and H. Masuda. Concise review: circulating endothelial progenitor cells for vascular medicine. Stem Cells 29: 1650-1655.
27 Bai, H. and Z. Z. Wang. 2008. Directing human embryonic stem cells to generate vascular progenitor cells. Gene Ther. 15: 89-95.   DOI   ScienceOn