Browse > Article
http://dx.doi.org/10.12717/DR.2017.21.1.011

Expression of Ion Channels in Perivascular Stem Cells derived from Human Umbilical Cords  

Kim, Eunbi (Department of Internal Medicine, School of Medicine, Kangwon National University)
Park, Won Sun (Department of Physiology, School of Medicine, Kangwon National University)
Hong, Seok-Ho (Department of Internal Medicine, School of Medicine, Kangwon National University)
Publication Information
Development and Reproduction / v.21, no.1, 2017 , pp. 11-18 More about this Journal
Abstract
Potassium channels, the largest group of pore proteins, selectively regulate the flow of potassium ($K^+$) ions across cell membranes. The activity and expression of $K^+$ channels are critical for the maintenance of normal functions in vessels and neurons, and for the regulation of cell differentiation and maturation. However, their role and expression in stem cells have been poorly understood. In this study, we isolated perivascular stem cells (PVCs) from human umbilical cords and investigated the expression patterns of big-conductance $Ca^{2+}$-activated $K^+$ ($BK_{Ca}$) and voltage-dependent $K^+$ ($K_v$) channels using the reverse transcription polymerase chain reaction. We also examined the effect of high glucose (HG, 25 mM) on expression levels of $BK_{Ca}$ and $K_v$ channels in PVCs. $K_{Ca}1.1$, $K_{Ca}{\beta}_3$, $K_v1.3$, $K_v3.2$, and $K_v6.1$ were detected in undifferentiated PVCs. In addition, HG treatment increased the amounts of $BK_{Ca}{\beta}_{3a}$, $BK_{Ca}{\beta}_4$, $K_v1.3$, $K_v1.6$, and $K_v6.1$ transcripts. These results suggested that ion channels may have important functions in the growth and differentiation of PVCs, which could be influenced by HG exposure.
Keywords
Perivascular stem cell; Ion channel; High glucose; Cell therapy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Li GR, Sun H, Deng X, Lau CP (2005) Characterization of ionic currents in human mesenchymal stem cells from bone marrow. Stem Cells 23:371-382.   DOI
2 Manea A, Manea SA, Todirita A, Albulescu IC, Raicu M, Sasson S, Simionescu M (2015) High-glucose-increased expression and activation of NADPH oxidase in human vascular smooth muscle cells is mediated by 4-hydroxynonenal-activated $PPAR{\alpha}$ and $PPAR{\beta}/\delta$. Cell Tissue Res 361:593-604.   DOI
3 Montemurro T, Andriolo G, Montelatici E, Weissmann G, Crisan M, Colnaghi MR, Rebulla P, Mosca F, Peault B, Lazzari L (2011) Differentiation and migration properties of human foetal umbilical cord perivascular cells: potential for lung repair. J Cell Mol Med 15: 796-808.   DOI
4 Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Peault B (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301-313.   DOI
5 Appaix F, Nissou MF, van der Sanden B, Dreyfus M, Berger F, Issartel JP, Wion D (2104) Brain mesenchymal stem cells: The other stem cells of the brain? World J Stem Cells 6:134-143.   DOI
6 Bai X, Ma J, Pan Z, Song YH, Freyberg S, Yan Y, Vykoukal D, Alt E (2007) Electrophysiological properties of human adipose tissue-derived stem cells. Am J Physiol Cell Physiol 293:C1539-C1550.
7 Chang TC, Hsu MF, Wu KK (2015) High glucose induces bone marrow-derived mesenchymal stem cell senescence by upregulating autophagy. PLos One 10: e01-26537.   DOI
8 Day ML, Pickering SJ, Johnson MH, Cook DI (1993) Cellcycle control of a large-conductance K channel in mouse early embryos. Nature 365:560-562.   DOI
9 An B, Na S, Lee S, Kim WJ, Yang SR, Woo HM, Kook S, Hong Y, Song H, Hong SH (2015a) Non-enzymatic isolation followed by supplementation of basic fibroblast growth factor improves proliferation, clonogenic capacity and SSEA-4 expression of perivascular cells from human umbilical cord. Cell Tissue Res 359:767-777.   DOI
10 An B, Heo HR, Lee S, Park JA, Kim KS, Yang J, Hong SH (2015b) Supplementation of growth differentiation factor-5 increases proliferation and size of chondrogenic pellets of human umbilical cord-derived perivascular stem cells. Tissue Eng Regen Med 12:181-187.   DOI
11 Tarasov MV, Bystrova MF, Kotova PD, Rogachevskaja OA, Sysoeva VY, Kolesnikov SS (2017) Calcium-gated K+ channels of the $K_{Ca}1.1$- and $K_{Ca}3.1$-type couple intracellular $Ca^{2+}$ signals to membrane hyperpolarization in mesenchymal stromal cells from the human adipose tissue. Pflugers Arch-Eur J Physiol 469:349-362.   DOI
12 Nagamura-Inoue T, He H (2014) Umbilical cord-derived mesenchymal stem cells: Their advantages and potential clinical utility. World J Stem Cells 6:195-202.   DOI
13 Park KS, Jung KH, Kim SH, Kim KS, Choi MR, Kim Y, Chai YG (2007) Functional expression of ion channels in mesenchymal stem cells derived from umbilical cord vein. Stem Cells 25:2044-2052.   DOI
14 Park WS, Heo SC, Jeon ES, Hong da H, Son YK, Ko JH, Kim HK, Lee SY, Kim JH, Han J (2013) Functional expression of smooth muscle-specific ion channels in TGF-${\beta}$(1)-treated human adipose-derived mesenchymal stem cells. Am J Physiol Cell Physiol 305:C377-C391.   DOI
15 Tsang WP, Shu Y, Kwok PL, Zhang F, Lee KK, Tang MK, Li G, Chan KM, Chan WY, Wan C (2013) $CD146^+$ Human umbilical cord perivascular cells maintain stemness under hypoxia and as a cell source for skeletal regeneration. PLoS One 8: e76153.   DOI
16 Wang K, Xue T, Tsang SY, Van Huizen R, Wong CW, Lai KW, Ye Z, Cheng L, Au KW, Zhang J, Li GR, Lau CP, Tse HF, Li RA (2005) Electrophysiological properties of pluripotent human and mouse embryonic stem cells. Stem Cells 23:1526-1534.   DOI
17 Qiu AW, Bian Z, Mao PA, Liu QH (2016) IL-17A exacerbates diabetic retinopathy by impairing Muller cell function via Act1 signaling. Exp Mol Med 48:e280.   DOI
18 Jiang P, Rushing SN, Kong CW, Fu J, Lieu DK, Chan CW, Deng W, Li RA (2010). Electrophysiological properties of human induced pluripotent stem cells. Am J Physiol Cell Physiol 298:C486-C495.   DOI
19 Hadarits O, Zoka A, Barna G, Al-Aissa Z, Rosta K, Rigo J Jr, Kautzky-Willer A, Somogyi A, Firneisz G (2016) Increased proportion of hematopoietic stem and progenitor cell population in cord blood of neonates born to mothers with gestational diabetes mellitus. Stem Cells Dev 24:575-586.
20 Heubach JF, Graf EM, Leutheuser J, Bock M, Balana B, Zahanich I, Christ T, Boxberger S, Wettwer E, Ravens U (2004) Electrophysiological properties of human mesenchymal stem cells. J Physiol 554:659-672.   DOI
21 Kawano S, Shoji S, Ichinose S amagata K, Tagami M, Hiraoka M (2002) Characterization of $Ca_2$ signaling pathways in human mesenchymal stem cells. Cell Calcium 32:165-174.   DOI
22 Kim J, Piao Y, Pak YK, Chung D, Han YM, Hong JS, Jun EJ, Shim JY, Choi J, Kim CJ (2015) Umbilical cord mesenchymal stromal cells affected by gestational diabetes mellitus display premature aging and mitochondrial dysfunction. Stem Cells Dev 24:575-586.   DOI
23 Kocabas F, Xie L, Xie J, Yu Z, DeBerardinis RJ, Kimura W, Thet S, Elshamy AF, Abouellail H, Muralidhar S, Liu X, Chen C, Sadek HA, Zhang CC, Zheng J (2015) Hypoxic metabolism in human hematopoietic stem cells. Cell Biosci 5:39.   DOI