• Title/Summary/Keyword: stem cell factor

Search Result 369, Processing Time 0.024 seconds

Protective Effects of Membrane-Free Stem Cell Extract from H2O2-Induced Inflammation Responses in Human Periodontal Ligament Fibroblasts (무막줄기세포추출물의 H2O2에 의해 유도된 치주 세포의 염증 반응 보호 효과)

  • He, Mei Tong;Kim, Ji Hyun;Kim, Young Sil;Park, Hye Sook;Cho, Eun Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.95-103
    • /
    • 2019
  • Periodontal inflammation, a major kind of periodontal diseases, is characterized to bleed, pain, and teeth loss, and it is resulted from oxidative stress. Membrane-free stem cell extract could avoid the immunogencity rejection by removal of cell membrane. In the present study, we investigated the protective effect of membrane-free stem cell extract from oxidative stress-induced periodontal inflammation in human periodontal ligament fibroblasts (HPLF). In the cell viability measurement, membrane-free stem cell extract showed significant increase of cell viability, compared with the $H_2O_2$-treated control group. To further investigation of molecular mechanisms, we measured inflammation and apoptosis related protein expressions. Membrane-free stem cell extract attenuated inflammation-related protein expressions such as nuclear factor kappa light chain enhancer of activated B cells, inducible nitric oxide synthase, and interleukin-6. In addition, the treatment of membrane-free stem cell extract decreased apoptotic protein expressions such as cleaved caspase-9, -3, poly (ADP-ribose) polymerase, and B-cell lymphoma 2 (Bcl-2)-associated X protein/Bcl-2 ratio in the $H_2O_2$-treated HPLF cells. In conclusion, membrane-free stem cell extract exhibited anti-oxidative stress effects by regulation of inflammation and apoptosis in HPLF, suggesting that it could be used as the treatment agents for periodontal inflammatory disease.

Maintenance of Proliferation and Adipogenic Differentiation by Fibroblast Growth Factor-2 and Dexamethasone Through Expression of Hepatocyte Growth Factor in Bone Marrow-derived Mesenchymal Stem Cells

  • Oh, Ji-Eun;Eom, Young Woo
    • Biomedical Science Letters
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Several studies have investigated the various effects of dexamethasone (Dex) on the proliferation and differentiation of mesenchymal stem cells (MSCs). Previously, we reported that co-treatment with L-ascorbic acid 2-phosphate and fibroblast growth factor (FGF)-2 maintained differentiation potential in MSCs through expression of hepatocyte growth factor (HGF). In this study, we investigated the effects of co-treatment with FGF-2 and Dex on the proliferation and differentiation potential of MSCs during a 2-month culture period. Co-treatment with FGF-2 and Dex increased approximately a 4.7-fold higher accumulation rate of MSC numbers than that by FGF-2 single treatment during a 2-month culture period. Interestingly, co-treatment with FGF-2 and Dex increased expression of HGF and maintained adipogenic differentiation potential during this culture period. These results suggest that co-treatment with FGF-2 and Dex preserves the proliferation and differentiation potential during long-term culture.

The Role of Stress Granules in the Neuronal Differentiation of Stem Cells

  • Jeong, Sin-Gu;Ohn, Takbum;Jang, Chul Ho;Vijayakumar, Karthikeyan;Cho, Gwang-Won
    • Molecules and Cells
    • /
    • v.43 no.10
    • /
    • pp.848-855
    • /
    • 2020
  • Cells assemble stress granules (SGs) to protect their RNAs from exposure to harmful chemical reactions induced by environmental stress. These SGs release RNAs, which resume translation once the stress is relieved. During stem cell differentiation, gene expression is altered to allow cells to adopt various functional and morphological features necessary to differentiate. This process induces stress within a cell, and cells that cannot overcome this stress die. Here, we investigated the role of SGs in the progression of stem cell differentiation. SGs aggregated during the neuronal differentiation of human bone marrow-mesenchymal stem cells, and not in cell lines that could not undergo differentiation. SGs were observed between one and three hours post-induction; RNA translation was restrained at the same time. Immediately after disassembly of SGs, the expression of the neuronal marker neurofilament-M (NF-M) gradually increased. Assembled SGs that persisted in cells were exposed to salubrinal, which inhibited the dephosphorylation of eukaryotic translation initiation factor 2 subunit 1 (eIF2α), and in eIF2α/S51D mutant cells. When eIF2α/S51A mutant cells differentiated, SGs were not assembled. In all experiments, the disruption of SGs was accompanied by delayed NF-M expression and the number of neuronally differentiated cells was decreased. Decreased differentiation was accompanied by decreased cell viability, indicating the necessity of SGs for preventing cell death during neuronal differentiation. Collectively, these results demonstrate the essential role of SGs during the neuronal differentiation of stem cells.

Long-Duration Three-Dimensional Spheroid Culture Promotes Angiogenic Activities of Adipose-Derived Mesenchymal Stem Cells

  • Lee, Jun Hee;Han, Yong-Seok;Lee, Sang Hun
    • Biomolecules & Therapeutics
    • /
    • v.24 no.3
    • /
    • pp.260-267
    • /
    • 2016
  • Mesenchymal stem cells (MSCs) offer significant therapeutic promise for various regenerative therapies. However, MSC-based therapy for injury exhibits low efficacy due to the pathological environment in target tissues and the differences between in vitro and in vivo conditions. To address this issue, we developed adipose-derived MSC spheroids as a novel delivery method to preserve the stem cell microenvironment. MSC spheroids were generated by suspension culture for 3 days, and their sizes increased in a time-dependent manner. After re-attachment of MSC spheroids to the plastic dish, their adhesion capacity and morphology were not altered. MSC spheroids showed enhanced production of hypoxia-induced angiogenic cytokines such as vascular endothelial growth factor (VEGF), stromal cell derived factor (SDF), and hepatocyte growth factor (HGF). In addition, spheroid culture promoted the preservation of extracellular matrix (ECM) components, such as laminin and fibronectin, in a culture time- and spheroid size-dependent manner. Furthermore, phosphorylation of AKT, a cell survival signal, was significantly higher and the expression of pro-apoptotic molecules, poly (ADP ribose) polymerase-1 (PARP-1) and cleaved caspase-3, was markedly lower in the spheroids than in MSCs in monolayers. In the murine hindlimb ischemia model, transplanted MSC spheroids showed better proliferation than MSCs in monolayer. These findings suggest that MSC spheroids promote MSC bioactivities via secretion of angiogenic cytokines, preservation of ECM components, and regulation of apoptotic signals. Therefore, MSC spheroid-based cell therapy may serve as a simple and effective strategy for regenerative medicine.

Cripto Enhances Proliferation and Survival of Mesenchymal Stem Cells by Up-Regulating JAK2/STAT3 Pathway in a GRP78-Dependent Manner

  • Yun, SeungPil;Yun, Chul Won;Lee, Jun Hee;Kim, SangMin;Lee, Sang Hun
    • Biomolecules & Therapeutics
    • /
    • v.26 no.5
    • /
    • pp.464-473
    • /
    • 2018
  • Cripto is a small glycosylphosphatidylinositol-anchored signaling protein that can detach from the anchored membrane and stimulate proliferation, migration, differentiation, vascularization, and angiogenesis. In the present study, we demonstrated that Cripto positively affected proliferation and survival of mesenchymal stem cells (MSCs) without affecting multipotency. Cripto also increased expression of phosphorylated janus kinase 2 (p-JAK2), phosphorylated signal transducer and activator of transcription 3 (p-STAT3), 78 kDa glucose-regulated protein (GRP78), c-Myc, and cyclin D1. Notably, treatment with an anti-GRP78 antibody blocked these effects. In addition, pretreatment with STAT3 short interfering RNA (siRNA) inhibited the increase in p-JAK2, c-Myc, cyclin D1, and BCL3 levels caused by Cripto and attenuated the pro-survival action of Cripto on MSCs. We also found that incubation with Cripto protected MSCs from apoptosis caused by hypoxia or $H_2O_2$ exposure, and the level of caspase-3 decreased by the Cripto-induced expression of B-cell lymphoma 3-encoded protein (BCL3). These effects were sensitive to down-regulation of BCL3 expression by BCL3 siRNA. Finally, we showed that Cripto enhanced expression levels of vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and hepatocyte growth factor (HGF). In summary, our results demonstrated that Cripto activated a novel biochemical cascade that potentiated MSC proliferation and survival. This cascade relied on phosphorylation of JAK2 and STAT3 and was regulated by GRP78. Our findings may facilitate clinical applications of MSCs, as these cells may benefit from positive effects of Cripto on their survival and biological properties.

Analysis of Cytokine and Hormone on Sasang constitution (사상체질별 Cytokine 및 Hormone 분석)

  • Choi, Sun-Mi;Kim, Min-Hee;Chi, Sang-En;Kim, Hee-Soo;Sung, Hyun-Jea;Shin, Min-Kyu
    • Korean Journal of Oriental Medicine
    • /
    • v.5 no.1
    • /
    • pp.73-79
    • /
    • 1999
  • In this research we proceeded experiments to find the basis which make it possible to explain the physical and pathological process of Sasang constitutional medicine, in the way substituting hematopoietic-immune system(essence of life, blood, Ki and mental faculties : 精血氣神) Under these suppositions, the essence of life(精) is the multipotent stem cell which has the possibility to be specialized to any cell, the Ki(氣), blood(血) and mental faculties(神) are inferred that they are formed from specialized the essence of life(精), the blood(血) is the red blood cells and etc. that appears as the result of the genesis of circulation system. The Ki(氣) is from specialized basic immunity, the mental faculties(神) means long-term memories or combined immunity. Cytokines can act as specilaizing, growing factors and particiate in extremly combined procedure being controlled by both positive and negative specializing signals. Blood gathering was carried out in the morning and on empty stomach. The plasma was seperated and Erythropoietin, Stem cell factor, Granulocyte-colony stimulaing factor, Tumor necrosis factor, interlukin-3, Interleukin-6 were measured with ELISA kit. According to the result of post analysis by Duncan, each constitution is different in SCF(stem cell factor), IL-6(interleukin-6), EPO(erythropoietin). The value of Stem cell factor is high in order of Soumin(少陰人), Soyangin(少陽人), and Taeumin(太陰人), The value of interleukin-6 is high in Taeumin, Soumin, and Soyangin. Erythropoietin is high in order of Soumin, Soyangin, and Taeumin.

  • PDF

In Vitro Neural Cell Differentiation Derived from Human Embryonic Stem Cells: II. Generation of Specific Neurons from Neural Progenitor Cells Treated with BDNF and PDGF

  • Jo Hyeon-Jeong;Kim Eun-Yeong;Choe Gyeong-Hui;An So-Yeon;Park Se-Pil;Im Jin-Ho
    • Proceedings of the KSAR Conference
    • /
    • 2002.06a
    • /
    • pp.84-84
    • /
    • 2002
  • This study was to investigate generation of the specific neuronal cell in vitro from the neural progenitors derived from human embryonic stem (hES, MB03) cells. For the neural progenitor cell formation, we produced embryoid bodies (EB: for 5 days, without mitogen) from hES cells and then neurospheres (for 7-10 days, 20 ng/㎖ of bFGF added N2 medium) from EB. And then for the differentiation into neuronal cells, neural progenitor cells were cultured in N2 medium (without bFGF) supplemented with brain derived neurotrophic factor (BDNF, 5 ng/㎖) or platelet derived growth factor-bb (pDGF-bb, 20ng/㎖) for 2 weeks. (omitted)

  • PDF

Conjugation of vascular endothelial growth factor to poly lactic-co-glycolic acid nanospheres enhances differentiation of embryonic stem cells to lymphatic endothelial cells

  • Yoo, Hyunjin;Choi, Dongyoon;Choi, Youngsok
    • Animal Bioscience
    • /
    • v.34 no.4
    • /
    • pp.533-538
    • /
    • 2021
  • Objective: Pluripotent stem cell-derived lymphatic endothelial cells (LECs) show great promise in their therapeutic application in the field of regenerative medicine related to lymphatic vessels. We tested the approach of forced differentiation of mouse embryonal stem cells into LECs using biodegradable poly lactic-co-glycolic acid (PLGA) nanospheres in conjugation with growth factors (vascular endothelial growth factors [VEGF-A and VEGF-C]). Methods: We evaluated the practical use of heparin-conjugated PLGA nanoparticles (molecular weight ~15,000) in conjugation with VEGF-A/C, embryoid body (EB) formation, and LEC differentiation using immunofluorescence staining followed by quantification and quantitative real-time polymerase chain reaction analysis. Results: We showed that formation and differentiation of EB with VEGF-A/C-conjugated PLGA nanospheres, compared to direct supplementation of VEGF-A/C to the EB differentiation media, greatly improved yield of LYVE1(+) LECs. Our analyses revealed that the enhanced potential of LEC differentiation using VEGF-A/C-conjugated PLGA nanospheres was mediated by elevation of expression of the genes that are important for lymphatic vessel formation. Conclusion: Together, we not only established an improved protocol for LEC differentiation using PLGA nanospheres but also provided a platform technology for the mechanistic study of LEC development in mammals.

Induction of Mac-2BP by nerve growth factor is regulated by the PI3K/Akt/NF-κB-dependent pathway in the HEK293 cell line

  • Park, Yuk-Pheel;Choi, Seung-Chul;Kim, Bo-Yeon;Kim, Jong-Tae;Song, Eun-Young;Kang, Seong-Ho;Yoon, Do-Young;Paik, Sang-Gi;Kim, Kwang-Dong;Kim, Jong-Wan;Lee, Hee-Gu
    • BMB Reports
    • /
    • v.41 no.11
    • /
    • pp.784-789
    • /
    • 2008
  • Mac-2BP is a ligand of the galectin family that has been suggested to affect tumor proliferation and metastasis formation. We assessed Mac-2BP expression at the transcriptional and translational levels to evaluate nerve growth factor (NGF)-induced Mac-2BP expression. A time kinetic analysis using reverse transcription-polymerase chain reaction showed that NGF-induced Mac-2BP transcript levels were 4-5 times higher than in controls. Mac-2BP enzyme-linked immunosorbent assay and immuno-fluorescence staining showed a 2-3-fold increase in intracellular and secreted Mac-2BP as a result of NGF stimulation. This increase was regulated by Akt activation and NF-${\kappa}B$ binding. p65 and p50-NF-${\kappa}B$ are major transcriptional factors in the Mac-2BP promoter region, and were shown to be regulated in accordance with the Akt activation states. Collectively, these results suggest that NGF induces Mac-2BP expression via the PI3K/Akt/NF-${\kappa}B$ pathway.

Factors to Predict Successful Harvest during Autologous Peripheral Hematopoietic Stem Cell Collection

  • Kim, Mun-Ja;Jin, Soo-He;Lee, Duk-Hee;Park, Dae-Weon;Koh, Sung-Ae;Lee, Kyung-Hee;Hyun, Myung-Soo;Kim, Min-Kyoung
    • Biomedical Science Letters
    • /
    • v.18 no.2
    • /
    • pp.131-138
    • /
    • 2012
  • Autologous peripheral blood stem cell transplantation (PBSCT) has been used as a major treatment strategy for hematological malignancies. The number of CD34 positive cells in the harvested product is a very important factor for achieving successful transplantation. We studied the factors that can predict the number of CD34 positive cells in the harvested product of acute myelocytic leukemia (AML), multiple myeloma (MM) and Non-Hodgkin's lymphoma (NHL) patients after mobilizing them with chemotherapy plus G-CSF. A total of 73 patients (AML 19 patients, MM 28 patients, NHL 26 patients) with hematological malignancies had been mobilized with chemotherapy and granulocyte colony-stimulating growth factor from April, 2000 to February, 2012. Group's characteristics, checkup opinion of pre-peripheral blood on the day of harvest & outcome of PBSC were analyzed and evaluated using SPSS statistics program after grouping patients as below; group 1: CD34 cell counts < $2{\times}10^6/kg$ (n=16); group 2: $2{\times}10^6/kg{\leq}CD34$ cell counts < $6{\times}10^6/kg$ (n=32); group 3: CD34 cell counts ${\geq}6{\times}10^6/kg$ (n=25). We analyzed the clinical characteristics, the peripheral blood (PB) parameters and the number of CD34 positive cells in the PB and their correlation with the yield of CD34 positive cells collected from the mobilized patients. The total number of leukapheresis sessions was 263 (mean: 3.55 session per patient), and the mean number of harvested CD34 positive cells per patient was $7.37{\times}10^6/kg$. The number of CD34 positive cells in product was significantly correlated with the number of platelet and CD34 positive cells in peripheral blood (P<0.05). The number of PB CD34 positive cells was the best significant factor for the quantity of harvested CD34 positive cells on the linear regression analysis (P<0.05). Many factors could influence the mobilization of peripheral blood stem cells. Platelet count and PB CD34 positive cells count were the two variables which remained to be significant in multivariate analysis. Therefore, the number of platelet and CD34 positive cells in peripheral blood on the day of harvest can be used as an accurate predictor for successful peripheral blood stem cell collection.