1 |
Norrmen C, Ivanov KI, Cheng J, et al. FOXC2 controls formation and maturation of lymphatic collecting vessels through cooperation with NFATc1. J Cell Biol 2009;185:439-57. https://doi.org/10.1083/jcb.200901104
DOI
|
2 |
Irrthum A, Devriendt K, Chitayat D, et al. Mutations in the transcription factor gene SOX18 underlie recessive and dominant forms of hypotrichosis-lymphedema-telangiectasia. Am J Hum Genet 2003;72:1470-8. https://doi.org/10.1086/375614
DOI
|
3 |
Mehrara BJ, Greene AK. Lymphedema and obesity: is there a link? Plast Reconstr Surg 2014;134:154e-60e. https://doi.org/10.1097/PRS.0000000000000268
DOI
|
4 |
Cueni LN, Detmar M. The lymphatic system in health and disease. Lymphat Res Biol 2008;6:109-22. http://doi.org/10.1089/lrb.2008.1008
DOI
|
5 |
Baluk P, Fuxe J, Hashizume H, et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med 2007;204:2349-62. https://doi.org/10.1084/jem.20062596
DOI
|
6 |
Yu P, Tung JK, Simons M. Lymphatic fate specification: an ERK-controlled transcriptional program. Microvasc Res 2014;96:10-5. https://doi.org/10.1016/j.mvr.2014.07.016
DOI
|
7 |
Pichol-Thievend C, Hogan BM, Francois M. Lymphatic vascular specification and its modulation during embryonic development. Microvasc Res 2014;96:3-9. https://doi.org/10.1016/j.mvr.2014.07.011
DOI
|
8 |
Tammela T, Alitalo K. Lymphangiogenesis: molecular mechanisms and future promise. Cell 2010;140:460-76. https://doi.org/10.1016/j.cell.2010.01.045
DOI
|
9 |
Makinen T, Veikkola T, Mustjoki S, et al. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J 2001;20:4762-73. https://doi.org/10.1093/emboj/20.17.4762
DOI
|
10 |
Karkkainen MJ, Haiko P, Sainio K, et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 2004;5:74-80. https://doi.org/10.1038/ni1013
DOI
|
11 |
Schulte-Merker S, Sabine A, Petrova TV. Lymphatic vascular morphogenesis in development, physiology, and disease. J Cell Biol 2011;193:607-18. https://doi.org/10.1083/jcb.201012094
DOI
|
12 |
Kunstfeld R, Hirakawa S, Hong YK, et al. Induction of cutaneous delayed-type hypersensitivity reactions in VEGF-A transgenic mice results in chronic skin inflammation associated with persistent lymphatic hyperplasia. Blood 2004;104:1048-57. https://doi.org/10.1182/blood-2003-08-2964
DOI
|
13 |
Lee SJ, Park C, Lee JY, et al. Generation of pure lymphatic endothelial cells from human pluripotent stem cells and their therapeutic effects on wound repair. Sci Rep 2015;5:11019. https://doi.org/10.1038/srep11019
DOI
|
14 |
Kreuger J, Nilsson I, Kerjaschki D, Petrova T, Alitalo K, Claesson-Welsh L. Early lymph vessel development from embryonic stem cells. Arterioscler Thromb Vasc Biol 2006;26:1073-8. https://doi.org/10.1161/01.ATV.0000217610.58032.b7
DOI
|
15 |
Kono T, Kubo H, Shimazu C, et al. Differentiation of lymphatic endothelial cells from embryonic stem cells on OP9 stromal cells. Arterioscler Thromb Vasc Biol 2006;26:2070-6. https://doi.org/10.1161/01.ATV.0000225770.57219.b0
DOI
|
16 |
Alitalo K, Tammela T, Petrova TV. Lymphangiogenesis in development and human disease. Nature 2005;438:946-53. https://doi.org/10.1038/nature04480
DOI
|
17 |
Lee MS, Ahmad T, Lee J, et al. Dual delivery of growth factors with coacervate-coated poly(lactic-co-glycolic acid) nanofiber improves neovascularization in a mouse skin flap model. Biomaterials 2017;124:65-77. https://doi.org/10.1016/j.biomaterials.2017.01.036
DOI
|
18 |
La WG, Yang HS. Heparin-conjugated poly(lactic-co-glycolic acid) nanospheres enhance large-wound healing by delivering growth factors in platelet-rich plasma. Artif Organs 2015;39:388-94. https://doi.org/10.1111/aor.12389
DOI
|
19 |
La WG, Kang SW, Yang HS, et al. The efficacy of bone morphogenetic protein-2 depends on its mode of delivery. Artif Organs 2010;34:1150-3. https://doi.org/10.1111/j.1525-1594.2009.00988.x
DOI
|
20 |
Jeon O, Kang SW, Lim HW, Chung JH, Kim BS. Long-term and zero-order release of basic fibroblast growth factor from heparin-conjugated poly(L-lactide-co-glycolide) nanospheres and fibrin gel. Biomaterials 2006;27:1598-607. https://doi.org/10.1016/j.biomaterials.2005.08.030
DOI
|
21 |
Yang K, Park E, Lee JS, et al. Biodegradable nanotopography combined with neurotrophic signals enhances contact guidance and neuronal differentiation of human neural stem cells. Macromol Biosci 2015;15:1348-56. https://doi.org/10.1002/mabi.201500080
DOI
|
22 |
Francois M, Caprini A, Hosking B, et al. Sox18 induces development of the lymphatic vasculature in mice. Nature 2008;456:643-7. https://doi.org/10.1038/nature07391
DOI
|
23 |
Niessen K, Zhang G, Ridgway JB, Chen H, Yan M. ALK1 signaling regulates early postnatal lymphatic vessel development. Blood 2010;115:1654-61. https://doi.org/10.1182/blood2009-07-235655
DOI
|
24 |
Moon EH, Kim YS, Seo J, Lee S, Lee YJ, Oh SP. Essential role for TMEM100 in vascular integrity but limited contributions to the pathogenesis of hereditary haemorrhagic telangiectasia. Cardiovasc Res 2015;105:353-60. https://doi.org/10.1093/cvr/cvu260
DOI
|
25 |
Koltowska K, Betterman KL, Harvey NL, Hogan BM. Getting out and about: the emergence and morphogenesis of the vertebrate lymphatic vasculature. Development 2013;140:1857-70. https://doi.org/10.1242/dev.089565
DOI
|
26 |
Liersch R, Nay F, Lu L, Detmar M. Induction of lymphatic endothelial cell differentiation in embryoid bodies. Blood 2006;107:1214-6. https://doi.org/10.1182/blood-2005-08-3400
DOI
|
27 |
Pan Y, Wang W, Yago T. Transcriptional regulation of podoplanin expression by Prox1 in lymphatic endothelial cells. Microvasc Res 2014;94:96-102. https://doi.org/10.1016/j.mvr.2014.05.006
DOI
|