• Title/Summary/Keyword: steering mechanism

Search Result 94, Processing Time 0.027 seconds

Speed, Depth and Steering Control of Underwater Vehicles with Four Stem Thrusters - Simulation and Experimental Results (네 대의 주 추진기를 이용한 무인잠수정의 속도, 심도 및 방위각 제어 - 시뮬레이션 및 실험)

  • JUN BONG-HUAN;LEE PAN-MOOK;LI JI-HONG;HONG SEOK-WON;LEE JIHONG
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.2 s.63
    • /
    • pp.67-73
    • /
    • 2005
  • This paper describes depth, heading and speed control of an underwater vehicle that has four stern thrusters of which forces are coupled in the diving and, steering motion, as well as the speed of the vehicle. The optimal linear quadratic controller is designed based on a linearized- state space model, developed by combining the dynamic equations of speed, steering and diving motion. The designed controller gives provides an optimal thrust distribution, minimizing the given performance index to control speed, depth and heading simultaneously. To validate the performance of the controller, a simulation and tank-test are carried out with DUSAUV (Dual Use Semi-Autonomous Underwater Vehicle), developed by KORDI as a test-bed for testing new underwater technologies. Optimal gains of the controller are tuned, using a computer simulation environment with a nonlinear 6-DOF numerical DUSAUV model, developed by PMM (Planner Motion Mechanism) test. To verify the performance of the presented controller in experiment, a tank-test with DUSAUV is carried out in the ocean engineering basin in KORDI. The experimental results are also compared with the simulation results to investigate the accordance of the numerical and the real mode.

Development of a Prototype of Guidance System for Rice-transplanter

  • Zhang, Fang-Ming;Shin, Beom-Soo;Feng, Xi-Ming;Li, Yuan;Shou, Ru-Jiang
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.255-263
    • /
    • 2013
  • Purpose: It is not easy to drive a rice-transplanter avoiding underlapped or overlapped transplanting in paddy fields. An automated guidance system for the riding-type rice-transplanter would be necessary to operate the rice-transplanter autonomously or to assist the beginning drivers as a driving aid. Methods: A prototype of guidance system was composed of embedded computers, RTK-GPS, and a power-steering mechanism. Two Kalman filters were adopted to overcome sparse positioning data (1 Hz) from the RTK-GPS. A global Kalman filter estimated the posture of rice-transplanter every one second, and a local Kalman filter calculated the posture from every new estimation of the global Kalman filter with an interval of 200 ms. A PID controller was applied to the row-following mode control. A control method of U-turning mode was developed as well. A stepping motor with a reduction gear set was used to rotate the shaft of steering wheel. Results: Test trials for U-turning and row-following modes were done in a paddy field after some parameters have been tuned at the ground speed range of 0.3 ~ 1.2 m/s. The minimum RMS error of offset was 3.13 cm at the ground speed of 0.3 m/s while the maximum RMS error was 13.01 cm at 1.2 m/s. The offset RMS error tended to increase as the ground speed increased. The target point distance, LT also affected the system performance and PID controller parameters should be adjusted on different ground speeds. Conclusions: A target angle-based PID controller plus stationary steering angle controller made it possible for the rice-transplanter to steer autonomously by following a reference line accurately and even on U-turning mode. However, as condition in paddy fields is very complicated, the system should control the ground speed that prevents it from deviating too much due to ditch and slope.

A Design of Adaptive Controller based on Immune System (면역시스템에 기반한 적응제어기 설계에 관한 연구)

  • Lee Kwon Soon;Lee Young Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1137-1147
    • /
    • 2004
  • In this paper, we proposed two types of adaptive control mechanism which is named HIA(Humoral Immune Algorithm) PID and CMIA(Cell-Mediated Immune Algorithm) controller based on biological immune system under engineering point of view. The HIA PID which has real time control scheme is focused on the humoral immunity and the latter which has the self-tuning mechanism is focused on the T-cell regulated immune response. To verify the performance of the proposed controller, some experiments for the control of AGV which is used for the port automation to carry container without human are performed. The experimental results for the control of steering and speed of an AGV system illustrate the effectiveness of the proposed control scheme. Moreover, in that results, proposed controllers have better performance than other conventional PID controller and intelligent control method which is the NN(neural network) PID controller.

A Study for Driving Mechanism Evaluation of the Lane Keeping Assistance System (차선유지지원장치 작동 메커니즘 평가에 관한 연구)

  • Chung, Seung-Hwan;Kim, Jeong-Min;Kwon, Seong-Jin;Lee, Bong-Hyun
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.1
    • /
    • pp.69-74
    • /
    • 2013
  • LKAS(Lane Keeping Assistance System) main function is to support the driver in keeping the vehicle within the current lane. Therefore, this system is able to reduce the driver workload with assisting the driver during driving. In this paper, we presented on study for test procedures and evaluation methods of the LKAS. The vehicle test conducted on straight road, left curve, right curve and four different types of lane under various vehicle speeds. This study proposed the LKAS system test procedures and methods that we are able to identify LKAS driving mechanism and performance.

Numerical Analysis on Flow Characteristics of a Vane Pump (Vane Pump의 유동 특성에 대한 수치 해석)

  • Lee, Sang-Hyuk;Jin, Bong-Yong;Hur, Nahm-Keon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.1 s.40
    • /
    • pp.34-40
    • /
    • 2007
  • In this study, the characteristic of a vane pump of automotive power steering system is numerically analyzed. The vane pump changes the energy level of operation fluid by converting mechanical input power to hydraulic output. To simulate this mechanism, moving mesh technique is adopted. As a result, the flow rate and pressure are obtained by numerical analysis. The flow rate agrees well with the experimental data. Moreover, the variation and oscillation of the pressure around the rotating vane are observed. As a result of flow characteristics, The difference of pressure between both side of vane tip causes the back flow into the rotor. As the rotational velocity increases, the flow rate at the outlet and the pressure in the vane tip rises with higher amplitude of oscillation. In order to reducing the oscillation, the design of devices for decreasing the cross-area of the outlet part and returning the flow from the outlet to the inlet is required.

Development of Differentially Driven Inpipe Inspection Robot for Underground Gas Pipeline (지하 매설 가스배관용 차동 구동형 배관검사 로봇의 개발)

  • No, Se-Gon;Ryu, Seong-Mu;Choe, Hyeok-Ryeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.2019-2029
    • /
    • 2001
  • Up to now a wide variety of researches on inpipe inspection robots have been introduced, but it still seems to be difficult to construct a robot providing mobility sufficient to navigate inside the complicated configuration of underground pipelines. This paper introduces a robot called MRINSPECT IV(Multifunctional Robotic Crawler for inpipe inSPECTion IV) for the inspection of urban gas pipelines with a nominal 4-inch inside diameter. The proposed robot can freely move along the basic configuration of pipelines such as along horizontal or vertical pipelines. Moreover it can travel along reducers, elbows, and steer in the branches by modulating the speeds of driving modules. Especially, its capability for steering in tile three-dimensional pipeline configuration has a competative edge over the other ones and provides excellent mobility in navigation. Its critical points in the design and construction are introduced and results of experiments are given.

A Study on the Mechanical Characteristics and Mold Technique of the Automobile Valve Housing using High Pressure Die Casting (고압다이캐스팅을 이용한 자동차 밸브하우징의 주조방안 및 기계적 특성에 관한 연구)

  • Lee, Jong-Hyung;Yi, Chang-Heon;Lee, Sang-Joong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.4
    • /
    • pp.301-308
    • /
    • 2006
  • Today's automobiles are changing into miniaturization and light weight for saving natural resources and energies. In order to raise the sufficiency of fuel consumption, new mechanism and components are required. Therefore, the expectations on the new materials are very high. Especially, Al materials are widely used to reduce the motors weight. Al using in automobiles is mostly casting material, and the material is developing rapidly in step with technical innovation. Al die casting has become an important field, as we are turning today's motor into light weight. One of the parts in steering system, valve housing, plays a role to reduce the operating effort of drivers. If valve housing being a part of steering system is produced by gravity casting, the space that manufacturing equipments are installed will be increased, and more energies and workers will be needed.

  • PDF

A Study on the Development of Auto Pilot Device at Shallow Water for the Docking of Fishing Boat (천수섬에서 어선 정박을 위한 자동도선시스템에 관한 연구)

  • Lee, Kwi-Joo;Benilov, Alexander Y;Sin, Young-Kuwn;Park, Myung-Kyu;Kim, Kyoung-Hwa;Park, Weon-Me
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.2
    • /
    • pp.144-148
    • /
    • 2004
  • Generally a ship in a port or canal is guided by tugboat(s), while the ship engine(s) and steering mechanism idle. The shortcomings of this method are insufficient in course keeping ability, danger of collision with waterside structures, time-consuming preparation for tugging, as well as the need to maintain tugboats. A new technology for ship guiding, based on the physical principle of interaction of a solid body with aerated liquids has been developed [1]. Model tests were carried out for the verification of system at slow speed by engine operating conditions and with an idle steering. The developed device has been proved to keep the ship on course safely.

Development of a Self-Travelling Sprayer for a Greenhouse (I) - Self-travelling - (시설원예용 파이프 유도식 무인방제기 개발 (I) - 무인 주행시스템 -)

  • 김태한;장익주;강춘태
    • Journal of Biosystems Engineering
    • /
    • v.24 no.3
    • /
    • pp.209-216
    • /
    • 1999
  • A self-travelling sprayer was developed to avoid the exposure of an operator to agricultural chemicals and exhaust gas, to improve safety and to increase working efficiency during the application and transport work in the greenhouses. This system consists of self-travelling system and the control system for application and safety device. The auto-spray car is equipped with a liquid chemical tank of 80l capacity. The travelling system adopted mechanical steering system which link mechanism of front wheel is guided by guide rollers. The sprayer travels along the guiding pipe which is set on the furrow in the greenhouses. The sprayer stops automatically applying and traveling when the liquid chemical tank becomes empty or when the sprayer reach the turning point. The spray booms swings in a vertical plane. The control system of safety devices controls the automatic stop of the sprayer when there is an obstacle on the traveling path, or when the battery becomes discharged. The auto-spray car traveled smoothly and steadily along the guide pipe during traveling straightly and turning on the ground.

  • PDF

A Study on the Hydraulic System Circuit Analysis and Modeling of the Hydrostatic Tire Roller (유압 구동방식 타이어 롤러를 위한 유압 시스템 회로분석 및 모델링에 관한 연구)

  • Kim, Sang-Gyum;Park, Chun-Shic;Kim, Jung-Ha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.432-439
    • /
    • 2003
  • In this research, we are trying to develop the new hydraulic driven tire roller which is conventionally operated by mechanical transmission system. The reason why we would like to develop it is that tire roller is one of the most useful machine for the road construction site and also imported totally from overseas. In this paper, we conceptualize the new hydraulic system and derive the equations of motion for dynamic analysis. And we investigate system modeling by using DAQ system. Finally, we will design the controller, which can manage the hydraulic circuit of steering and traction mechanism system. The advent of modern high-speed computers coupled with the application of high-fidelity simulation technology can be used to create “virtual prototypes of construction equipment. Tests conducted on these virtual prototypes may be used to augment actual machine testing, thereby lowering costs and shortening time to production. So, we studied tire roller to integrate development technology. In System Analysis, We formulate hydraulic driving system model and hydraulic steering system model. Also, We integrate DAQ system to acquire experimental result in real tire roller equipment.