• 제목/요약/키워드: steering angle

검색결과 435건 처리시간 0.027초

Steering Controller of the Outdoor Autonomous Mobile Robot using MR Sensors

  • Son, Seok-Jun;Kim, Tae-Gon;Kim, Jeong-Heui;Park, Jin-Kyu;Youngcheol Lim;Kim, Eui-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.32.6-32
    • /
    • 2001
  • This paper describes the steering control and geomagnetism cancellation for an autonomous mobile robotusing MR sensors. The magnetic-resistive (MR) sensor obtains the vector summation of the magnetic fields from embedded magnets and the Earth. The robot is controlled by the magnetic fields from embedded magnets. So, geomagnetism is the disturbance in the steering control system. In this paper, we propose a new method of the sensor arrangement in order to remove the geomagnetism and robotbody interference. The proposed method uses two MR sensors located in a level plane and the steering controller has been developed. The controller has three input variables (dBx, dBy, dBz) using the measured magnetic field difference, and an output variable (the steering angle) ...

  • PDF

전달각을 고려한 조향기구의 최적합성 (Optimal Synthesis of Steering Mechanisms Considering Transmission Angles)

  • 박종근
    • 한국기계가공학회지
    • /
    • 제11권1호
    • /
    • pp.68-75
    • /
    • 2012
  • In this study, the optimal synthesis of planar steering mechanisms for vehicles is studied. The author minimized the steering error between two front wheels subject to the constraints of transmission angles. Nonlinear programming methods such as BFGS method and golden section search method are used for this optimization. As numerical examples, Ackermann's steering mechanism, 6-link and 10-link planar mechanism are adopted to check the usefulness of this method. Consequently, among the three optimized mechanisms, 10-link planar one conducts far more accurate performance subject to tight constraints of transmission angles.

실차 실험을 통한 운전자 조향 모델의 검증 (Validation of Driver Steering Model with Vehicle Test)

  • 정태영;이건복;이경수
    • 한국자동차공학회논문집
    • /
    • 제13권1호
    • /
    • pp.76-82
    • /
    • 2005
  • In this paper, validation of Driver Steering Model has been conducted. The comparison between the simulation model and vehicle test results shows that the model is very feasible for describing combined human driver and actual vehicle dynamic behaviors. The 3D vehicle model is consisted of 6-DOF sprung mass and 4-quarter car model for vehicle body dynamics. Powertrain model including differential gear and Pacejka tire model are applied. The driver steering model is also validated with vehicle test result. The driver steering model is based on angle and displacement error from the desired path, recognized by driver.

Design and experiment of fuzzy PID yaw rate controller for an electrically driven four wheel vehicle without steering mechanism

  • I, H
    • 한국지능시스템학회논문지
    • /
    • 제9권5호
    • /
    • pp.480-489
    • /
    • 1999
  • Design and experimental results of yaw rate controller is described for electricallydriven four wheel vehicle without steering mechanism. Yaw rate controller has been known to be necessary to cope with nonlinear char-acteristics of the wheel/road conditions with respect to different road condition and steering angle. For an effective yaw rate control, a fuzzy PID gain scheduler is considered with changing control parameters. In order to apply proposed algorithm to the system a downsized four wheel drive electrically driven vehicle without steering mechanism was manufactured. With these techniques the proposed yaw rate controller is shown by experiment results to be obtained suficient performance in the whole steering regions.

  • PDF

2개의 비전 센서 및 딥 러닝을 이용한 도로 속도 표지판 인식, 자동차 조향 및 속도제어 방법론 (The Road Speed Sign Board Recognition, Steering Angle and Speed Control Methodology based on Double Vision Sensors and Deep Learning)

  • 김인성;서진우;하대완;고윤석
    • 한국전자통신학회논문지
    • /
    • 제16권4호
    • /
    • pp.699-708
    • /
    • 2021
  • 본 논문에서는 2개의 비전 센서와 딥 러닝을 이용한 자율주행 차량의 속도제어 알고리즘을 제시하였다. 비전 센서 A로부터 제공되는 도로 속도 표지판 영상에 딥 러닝 프로그램인 텐서플로우를 이용하여 속도 표지를 인식한 후, 자동차가 인식된 속도를 따르도록 하는 자동차 속도 제어 알고리즘을 제시하였다. 동시에 비전 센서 B부터 전송되는 도로 영상을 실시간으로 분석하여 차선을 검출하고 조향 각을 계산하며 PWM 제어를 통해 전륜 차축을 제어, 차량이 차선을 추적하도록 하는 조향 각 제어 알고리즘을 개발하였다. 제안된 조향 각 및 속도 제어 알고리즘의 유효성을 검증하기 위해서 파이썬 언어, 라즈베리 파이 및 Open CV를 기반으로 하는 자동차 시작품을 제작하였다. 또한, 시험 제작한 트랙에서 조향 및 속도 제어에 관한 시나리오를 검증함으로써 정확성을 확인할 수 있었다.

FEM을 이용한 타이어의 벨트각도에 따른 PRAT 및 코너링 특성 연구 (A Study on Characteristics of PRAT and Cornering due to the Belt Angle of Tire by the FEM)

  • 성기득;김성래;김기현;김선주;조춘택
    • 한국정밀공학회지
    • /
    • 제23권2호
    • /
    • pp.104-112
    • /
    • 2006
  • The influence of tire belt angle on the Plysteer Residual Aligning Torque(PRAT) and the cornering stiffness by the FEM has been studied. The PRAT is a performance factor of the tire about vehicle pull, and the cornering stiffness has relation to vehicle steering response of outdoor test. To validate FE model for analysis, simulation data for both the static stiffness(vertical, lateral) and the PRAT have been compared with the experimental data. In addition to the characteristics of the PRAT and the cornering stiffness due to the tire belt angle, rolling and cornering contact characteristics have been studied. The tendency of the PRAT and the cornering stiffness due to the belt angle can be used as a guide line for the tire design in relation to vehicle pull and vehicle steering response.

기동성을 위한 후륜 조향 차량의 최적 성능에 대한 연구 (An Experimental Study of Optimal Performance of Rear Wheel Steering Vehicle for Maneuverability)

  • 안국진;좌은혁;박관우;윤영식;이경수
    • 자동차안전학회지
    • /
    • 제11권2호
    • /
    • pp.23-28
    • /
    • 2019
  • This paper presents an optimal performance of rear wheel steering vehicle for maneuverability. The maneuverability of vehicle is evaluated in terms of yaw rate, body slip angle and driver input. The maneuverability of vehicle can be improved by rear wheel steering system. To obtain optimal performance of rear wheel steering vehicle, the optimal control history is designed. The high dimensional trajectory optimization problem is solved by formulating a quadratic program considering rear wheel steer input. To evaluate handling performance 7 degree-of-freedom vehicle model with actuation sub-models is designed. A step steer test is conducted to evaluate rear wheel steering vehicle. A response time, a TB factor, overshoot, and yaw rate gain are investigated through objective criteria, assessment webs. The handling performance of vehicle is evaluated via computer simulations. It has been shown from simulation studies that optimal controlled rear wheel steering vehicle provides improved performance compared to others.

Control Algorithm for Stabilization of Tilt Angle of Unmanned Electric Bicycle

  • Han, Sangchul;Han, Jongkil;Ham, Woonchul
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권3호
    • /
    • pp.176-180
    • /
    • 2001
  • In this papers, we derive a simple kinematic and dynamic formulation of an unmanned electric bicycle. We also check the controllability of the stabilization problem of bicycle. We propose a new control algorithm for the self stabilization of unmanned bicycle with bounded wheel speed and steering angle by using nonlinear control based on the sliding patch and stuck phenomena which was introduced by W. Ham. We also propose a sort of optimal control strategy for steering angle and driving wheel speed that make the length of bicycle\`s path be the shortest. From the computer simulation results, we prove the validity of the proposed control algorithm.

  • PDF

비전시스템을 이용한 자율주행량의 차선내 차량의 변위 검출에 관한 연구 (A Study on Detection of Lane and Displacement of Obstacle for AGV using Vision System)

  • 이진우;최성욱;이창훈;이영진;이권순
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2202-2205
    • /
    • 2001
  • This paper is composed of two parts. One is image preprocessing part to measure the condition of the lane and vehicle. This finds the information of lines using RGB ratio cutting algorithm, the edge detection and Hough transform. The other obtains the situation of other vehicles using the image processing and viewport. At first, 2 dimension image information derived from vision sensor is interpreted to the 3 dimension information by the angle and position of the CCD camera. Through these processes, if vehicle knows the driving conditions which are lane angle, distance error and real position of other vehicles, we should calculate the reference steering angle by steering controller.

  • PDF

노면상태, 타이어 공기압 및 축하중이 조향력에 미치는 영향 (The Effect of Ground Condition, Tire Inflation Pressure and Axle Load on Steering Torque)

  • 박원엽;김성엽;이충호;최달문;이상식;이규승
    • Journal of Biosystems Engineering
    • /
    • 제29권5호
    • /
    • pp.419-424
    • /
    • 2004
  • In this study, a series of soil bin experiment was carried out to investigate experimentally the effect of the tire inflation pressure and axle load of tire on the steering torque for the off-road condition. The experiment was performed at the three levels of off-road conditions(ground I, ground II and ground III) and on-road condition(ground IV), four levels of tire inflation pressure(120 kPa, 170 kPa, 220 kPa and 270 kPa), and four levels of axle load(1470N, 1960N, 2450N and 2940N). The results of this study are summarized as follows: 1. Steering torque at the off-road conditions were higher than that on the on-road conditions for all levels of tire inflation pressure and axle load. 2. As the axle load increased, steering torque also increased f3r all experimental ground conditions. 3. For the axle load of 1470N the biggest steering torque was measured on the ground condition I, but as the axle load increased to the value of 2940N the biggest steering torque was measured on the ground condition III. From the above results, it was found that for the low axle load, steering torque gets higher on the soft ground condition, but for the high axle load, steering torque gets higher on hard ground condition for whole range of experimental conditions. 4. As the tire inflation pressure decreased, steering torque increased on the on-road condition, but no specific trend was not found at the off-road conditions.