• Title/Summary/Keyword: steel ratio

Search Result 3,386, Processing Time 0.026 seconds

A Fundamental Study on Properties of Mortar Following the Stainless Steel Slag of Fineness (스테인레스 스틸 슬래그의 분말도에 따른 모르터의 물성에 관한 기초적 연구)

  • 이희두;임남기
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.05a
    • /
    • pp.69-74
    • /
    • 2002
  • The following results are achieved from a mortar flow test depending on stainless steel slag fineness, replacement ratio, and a research on material age compressive strength, strength activity index. 1. Flow is proportional to the stainless steel slag fineness within the limits of 4000~8000$\textrm{cm}^2$/g, but in the case of fineness 20000$\textrm{cm}^2$/g flow decreases at all conditions except the case of replacement ratio 10%. 2. As stainless steel slag replacement ratio increases, Mortar of flow somewhat decreases. 3. As stainless steel slag blends, compressive strength decreases, but in proportion to the increase of age, compressive strength increases. 4. As stainless steel slag replacement ratio, compressive strength decreases. 5. In the case of stainless steel slag fineness 6000$\textrm{cm}^2$/g and 20.000$\textrm{cm}^2$/g, compressive strength of revelation ratio has the maximum value when it's replacement ratio is 10%.

  • PDF

An Experimental Study on the Behavior of Reinforced Concrete Columns Subjected Longitudinal Steel Ratio. (철근비 변화에 따른 철근콘크리트 기둥의 거동에 관한 실험적 연구)

  • 조성찬;장정수;김광석;박진희;김윤용;한상훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.284-292
    • /
    • 1995
  • This paper is on experimental study on the behavior of reinforced concrete columns subjected to longitudinal steel ratio To investigate the effects of concrete strength and longitedinal steel ratio on the behavior of reinforced concrete columns. a series of tests were carried out for thirty-six tied reinforced concrete columns with a 100mm square cross section and three slendemess ratio of 15, 30 and 50. And To study and illustrate the change of the ultimate loads and that of displacements, two different concrete strength of 180,26kfg/$\textrm{cm}^2$, 819,36kfg/$\textrm{cm}^2$ and five different longitudinal steel ratio of 0.5, 1.0, 4.0, 5.7 and 10.3% were used. The boundary conditions at the ends were both hinged and the end eccentricities (17mm) were equal and of the same sign. While the ultimate load capacity of high-strength concrete column was much increased when the columns were short, that was not when the columns were slender. The effect of longitudinal steel ratio on the increased of ultimate load of column was more evident for slender columns than for short ones and the ultimate of longitudinal steel ratio were more pronounced with increasing concrete strength. The more inserted the longitudinal steel, the more increased the ultimate load, but the superabundance of longitudinal steel ratio over the limitation of maximum steel ratio in ACI code was used, it was showed that the ultimate load was rather decreased.

  • PDF

Experimental study on flexural behavior of splicing concrete-filled GFRP tubular composite members connected with steel bars

  • Chen, B.L.;Wang, L.G.
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1129-1144
    • /
    • 2015
  • Based on the experiment, this paper focuses on studying flexural behavior of splicing concrete-filled glass fiber reinforced polymer (GFRP) tubular composite members connected with steel bars. The test results indicated the confinement effects of GFRP tubes on the concrete core in compression zone began to produce, when the load reached about $50%P_u$ ($P_u$-ultimate load), but the confinement effects in tensile zone was unobvious. In addition, the failure modes of composite members were influenced by the steel ratio of the joint. For splicing unreinforced composite members, the steel ratio more than 1.96% could satisfy the splicing requirements and the steel ratio 2.94% was ideal comparatively. For splicing reinforced specimen, the bearing capacity of specimen with 3.92% steel ratio was higher 21.4% than specimen with 2.94% steel ratio and the latter was higher 21.2% than the contrast non-splicing specimen, which indicated that the steel ratio more than 2.94% could satisfy the splicing requirements and both splicing ways used in the experiment were feasible. So, the optimal steel ratio 2.94% was suggested economically. The experimental results also indicated that the carrying capacity and ductility of splicing concrete-filled GFRP tubular composite members could be improved by setting internal longitudinal rebars.

Axial behavior of the steel reinforced lightweight aggregate concrete (SRLAC) short columns

  • Mostafa, Mostafa M.A.;Wu, Tao;Liu, Xi;Fu, Bo
    • Steel and Composite Structures
    • /
    • v.39 no.5
    • /
    • pp.583-598
    • /
    • 2021
  • The composite steel reinforced concrete (SRC) columns have been widely used in Structural Engineering due to their good performances. Many studies have been done on the SRC columns' performances, but they focused on the ordinary types with conventional configurations and materials. In this study, nine new types of steel reinforced lightweight aggregate concrete (SRLAC) short columns with cross-shaped (+shaped and X-shaped) steel section were tested under monotonically axial compressive load; the studied parameters included steel section ratio, steel section configuration, ties spacing, lightweight aggregate concrete (LWAC) strength, and longitudinal bars ratio. From the results, it could be found that the specimens with larger ties ratio, concrete strength, longitudinal bars ratio, and steel section ratio achieved great strength and stiffness due to the excellent interaction between the concrete and steel. The well-confined concrete core could strengthen the steel section. The ductility and toughness of the specimens were influenced by the LWAC strength, steel section ratio, and longitudinal bars ratio; in addition, larger ties ratio with smaller LWAC strength led to better ductility and toughness. The load transfer between concrete and steel section largely depends on the LWAC strength, and the ultimate strength of the new types of SRLAC short columns could be approximately predicted, referring to the codes' formulas of ordinary types of steel reinforced concrete (SRC) columns. Among the used codes, the BS-5400-05 led to the most conservative results.

An Analysis of the Reinforced Concrete Circular Ring Sector Plates with Arbitrary Boundary Conditions (任意의 境界條件을 갖는 鐵筋콘크리트 扇形板의 解析(II) - 第 2報 鐵筋比 및 邊長比의 影響 -)

  • Jo, Jin-Gu
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.1
    • /
    • pp.78-86
    • /
    • 1992
  • This paper aims at investigating the effect of steel ratio and the magnitude of edge-ratio on the mechanical characteristics of reinforced concrete ring sector plate. The influence of steel bars was taken into account by coupling stiffness matrix of the steel bar element with that of the concrete plate element without dealing with separate element of steel bar and by establishing the composite stiffness matrix, which leads to the desirable result which does not increase th number of element could be obtained. Through case studies with 6 cases various steel ratios in ring sector plate supported at four edges and 4 cases with different open angles, the influence of the steel ratio was examined. A numerical analysis to find out the effect of the steel ratio d ue to above mentioned cases was carried out by 4 boundary conditions ; all edges clamped (B.C-1), all edges simply supported (B.C-2), curvilinear two edges clamped and other edges free (B.C-3) and curvilinear two edges simply supported and other edges free(B.C-4). The main results obtained are summarized as follows : 1. The effect of steel ratio on the magnitude of lateral deflection and x-directional bending moment at the center of sector plate and the midpoint of outer and inner curvilinear edges is almost the same up to $30^{\circ}$ of open angle. Beyond $30^{\circ}$ of the angle, the larger the angle, the greater the effect of ratio. 2. In design works using balanced steel ratio, the effect of steel bar can be ignored. But for larger open angles, especially greater than $90^{\circ}$, it proves desirable to consider the effect of steel bar. 3. The effect of the arc length of center circle/straight edge on lateral deflection and bending moment is remarkable in B.C-2. For larger open angle, the effect is also noted except for B.C-3 which turn out hardly affected. 4. The effect of the radius of curvature/straight side length on lateral deflection and x-directional bending moment is noted in B.C-2. As open angle increases, B.C-1 and B.C-3 almost agree and B.C-2 approaches B.C-4.

  • PDF

A Proposal of Minimum Steel Ratio Considering Size Effect for Flexural Reinforced Concrete Member (크기효과가 고려된 철근콘크리트 휨 부재의 최소철근비 제안)

  • Yoo, Sung-Won;Her, Yoon
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.128-136
    • /
    • 2010
  • In according with concrete structural design standard, it is common designing flexure reinforcement concrete to induce tension failure. So reinforcing ratio is limited to inducing tension failure. And maximum reinforcing ratio is regulated to protecting concrete compression strength caused by over reinforced building. Minimum reinforcing ratio is also limited in designing standard to protecting brittle failure as extremely using less reinforcing bar. But in minimum reinforcing ratio it is extremely conservative or it is sometimes impossible to induce stable tension-failure because they are depending on yield failure and experienced method and concrete designing standard strength. Therefore the purpose of the present paper is to evaluate the flexural behavior of minimum steel ratio of reinforced concrete of beams and to propose the guide-line of equation of minimum steel ratio by performing static flexural test of 16 beams according to size effect, number of steel, yielding stress of steel, and concrete compressive strength which are presumed effective variables. From experimental results, the equation of minimum steel ratio was newly proposed considered size effect.

Cyclic tests and numerical study of composite steel plate deep beam

  • Hu, Yi;Jiang, Liqiang;Zheng, Hong
    • Earthquakes and Structures
    • /
    • v.12 no.1
    • /
    • pp.23-34
    • /
    • 2017
  • Composite steel plate deep beam (CDB) is proposed as a lateral resisting member, which is constructed by steel plate and reinforced concrete (RC) panel, and it is connected with building frame through high-strength bolts. To investigate the seismic performance of the CDB, tests of two 1/3 scaled specimens with different length-to-height ratio were carried out under cyclic loads. The failure modes, load-carrying capacity, hysteretic behavior, ductility and energy dissipation were obtained and analyzed. In addition, the nonlinear finite element (FE) models of the specimens were established and verified by the test results. Besides, parametric analyses were performed to study the effect of length-to-height ratio, height-to-thickness ratio, material type and arrangement of RC panel. The experimental and numerical results showed that: the CDBs lost their load-carrying capacity because of the large out-of plane deformation and yield of the tension field formed on the steel plate. By increasing the length-to-height ratio of steel plate, the load-carrying capacity, elastic stiffness, ductility and energy dissipation capacity of the specimens were significantly enhanced. The ultimate loading capacity increased with increasing the length-to-height ratio of steel plate and yield strength of steel plate; and such capacity increased with decreasing of height-to-thickness ratio of steel plate and gap. Finally, a unified formula is proposed to calculate their ultimate loading capacity, and fitting formula on such indexes are provided for designation of the CDB.

Experimental and numerical studies on the frame-infill in-teraction in steel reinforced recycled concrete frames

  • Xue, Jianyang;Huang, Xiaogang;Luo, Zheng;Gao, Liang
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1391-1409
    • /
    • 2016
  • Masonry infill has a significant effect on stiffness contribution, strength and ductility of masonry-infilled frames. These effects may cause damage of weak floor, torsional damage or short-column failure in structures. This article presents experiments of 1/2.5-scale steel reinforced recycled aggregates concrete (SRRC) frames. Three specimens, with different infill rates consisted of recycled concrete hollow bricks (RCB), were subjected to static cyclic loads. Test phenomena, hysteretic curves and stiffness degradation of the composite structure were analyzed. Furthermore, effects of axial load ratio, aspect ratio, infill thickness and steel ratio on the share of horizontal force supported by the frame and the infill were obtained in the numerical example.

Seismic Performance and Flexural Over-strength of Circular RC Column (원형 RC 기둥의 내진성능과 휨 초과강도)

  • Ko, Seong-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.49-58
    • /
    • 2013
  • Eight small scale circular reinforced concrete columns were tested under cyclic lateral load with constant axial load. Test specimens were designed with 4.5 aspect ratio. The selected test variables are longitudinal steel ratio, transverse steel ratio, yielding strength of longitudinal steel and axial load ratio. The test results of columns with different longitudinal steel ratio, transverse steel ratio and axial load ratio showed different seismic performance such as equivalent damping ratio, residual displacement and effective stiffness. It was found that the column with low strength of longitudinal steel showed significantly reduced seismic performance, especially for equivalent damping ratio and residual displacement. The regulation of flexural over-strength is adopted by Korea Bridge Design Specifications (Limited state design, 2012). The test results are compared with nominal strength, result of nonlinear moment-curvature analysis and the design specifications such as AASHTO LRFD and Korea Bridge Design Specifications (Limited state design).

The behavior of lightweight aggregate concrete filled steel tube columns under eccentric loading

  • Elzien, Abdelgadir;Ji, Bohai;Fu, Zhongqiu;Hu, Zhengqing
    • Steel and Composite Structures
    • /
    • v.11 no.6
    • /
    • pp.469-488
    • /
    • 2011
  • This paper consists of two parts; the first part describes the laboratory work concerning the behavior of lightweight aggregate concrete filled steel tubes (LACFT). Based on eccentricity tests, fifty-four specimens with different slenderness ratios (L/D= 3, 7, and 14) were tested. The main parameters varied in the test are: load eccentricity; steel ratio; and slenderness ratio. The standard load-strain curves of LACFT columns under eccentric loading were summarized and significant parameters affecting LACFT column's bearing capacity, failure mechanism and failure mode such as confinement effect and bond strength were all studied and analyzed through the comparison with predicted strength of concrete filled steel tube columns (CFT) using the existing codes such as AISC-LRFD (1999), CHN DBJ 13-51-2003 (2003) and CHN CECS 28:90 (1990). The second part of this paper presents the results of parametric study and introduces a practical and accurate method for determination of the maximum compressive strength of confined concrete core ($f_{max}$), In addition to, the study of the effect of aspect-ratio and length-width ratio on the yield stress of steel tubes ( $f_{sy}$) under biaxial state of stress in CFT columns and the effect of these two factors on the ultimate load carrying capacity of axially loaded CFT/LACFT columns.