• Title/Summary/Keyword: steel plates

Search Result 1,484, Processing Time 0.034 seconds

Evaluation of Shear Capacity of Wide Beams Reinforced with GFRP and Steel Plates with Openings by Various Supporting Areas (지지부 조건에 따른 유공형 판으로 전단보강된 넓은 보의 전단성능 평가)

  • Kim, Heecheul;Ko, Myung Joon;Kim, Min Sook;Lee, Young Hak
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.3
    • /
    • pp.269-275
    • /
    • 2016
  • In this paper, shear performance of concrete wide beams was evaluated through shear failure tests. The specimens were designed to have two continuous spans with a column at the center of the wide beam. Also the specimens were reinforced with plates with openings as shear reinforcements. For the test, total eight specimens, including five specimens were reinforced with steel plates and the other three specimens were reinforced with GFRP plates were manufactured. And the shear strengths obtained from the tests were compared with ones from the equation provided by ACI 318. Support width of wide beam, support section of wide beam and shear reinforcement material were considered as variables. The results showed that the support width was proportional to the increase of shear strength. Also, regardless of material type of shear reinforcement, the shear reinforcing effect was similar when the amount of shear reinforcement was the same.

A Study on the Evaluation of Design Compressive Strength and Flexural Strength of the Improved Deep Corrugated Steel Plate (성능 개선된 대골형 파형강판의 설계 압축 및 휨 강도 평가에 대한 연구)

  • Sim, Jong Sung;Lee, Hyeon Gi;Kang, Tae Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.155-162
    • /
    • 2011
  • The structures that use the bridge plates are considered to have advantages such as short work term, excellent economical efficiency and low maintenance cost. Bridge plates are being widely used for water ducts and eco-corridors as replacements of reinforced concrete ducts. Bridge plates are deep and have greater pitch as compare to conventionally deep corrugated steel plate. They are expected to be increasingly used in the future. The structures that use bridge plates have two forms, such as arch type and box type. The arch type structures are designed based on the compressive strength, and the box type structures, based on the moment in the plate member. In this study, the ultimate strength and moment strength of the connection part of the specimens were examined by their thickness. Static and bending tests used to evaluate the performance of bridge plate. Finally, These results were used in the design process.

Nonlinear thermal post-buckling analysis of graphene platelets reinforced metal foams plates with initial geometrical imperfection

  • Yin-Ping Li;Gui-Lin She;Lei-Lei Gan;Hai-Bo Liu
    • Steel and Composite Structures
    • /
    • v.46 no.5
    • /
    • pp.649-658
    • /
    • 2023
  • Although some scholars have studied the thermal post-buckling of graphene platelets strengthened metal foams (GPLRMFs) plates, they have not considered the influence of initial geometrical imperfection. Inspired by this fact, the present paper studies the thermal post-buckling characteristics of GPLRMFs plates with initial geometrical imperfection. Three kinds of graphene platelets (GPLs) distribution patterns including three patterns have been considered. The governing equations are derived according to the first-order plate theory and solved with the help of the Galerkin method. According to the comparison with published paper, the accuracy and correctness of the present research are verified. In the end, the effects of material properties and initial geometrical imperfection on the thermal post-buckling response of the GPLRMFs plates are examined. It can be found that the presence of initial geometrical imperfection reduces the thermal post-buckling strength. In addition, the present study indicates that GPL-A pattern is best way to improve thermal post-buckling strength for GPLRMFs plates, and the presence of foams can improve the thermal post-buckling strength of GPLRMFs plates, the Foam- II and Foam- I patterns have the lowest and highest thermal post-buckling strength. Our research can provide guidance for the thermal stability analysis of GPLRMFs plates.

Free vibration analysis of pores functionally graded plates using new element based on Hellinger-Reissner functional

  • Majid Yaghoobi;Mohsen Sedaghatjo;Mohammad Karkon;Lazreg Hadji
    • Steel and Composite Structures
    • /
    • v.49 no.6
    • /
    • pp.713-728
    • /
    • 2023
  • This paper aims to investigate the free vibration analysis of FG plates, taking into account the effects of even and uneven porosity. The study employs the Hellinger-Reisner functional and obtains the element's bending stress and membrane stress fields from the analytical solution of the governing equations of the thick plate and plane problem, respectively. The displacement field serves as the second independent field. While few articles on free vibration analysis of circular plates exist, this paper investigates the free vibration of both rectangular and circular plates. After validating the proposed element, the paper investigates the effects of porosity distributions on the natural frequency of the FG porous plate. The study calculates the natural frequency of thin and thick bending plates with different aspect ratios and support conditions for various porosity and volume fraction index values. The study uses three types of porosity distributions, X, V, and O, for the uneven porosity distribution case. For O and V porosity distribution modes, porosity has a minor effect on the natural frequency for both circular and rectangular plates. However, in the case of even porosity distribution or X porosity distribution, the effect of porosity on the natural frequency of circular and rectangular plates increases with an increase in the volume fraction index.

An Experimental Study for the Evaluation of the Structural Behavior Eco Deck Plate (Eco Deck Plate의 구조적 거동 평가를 위한 실험적 연구)

  • Lee, Jin-Eung;Lee, Yong-Jae;Lee, Soo-Kueon;Jung, Byung-Joo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.40-48
    • /
    • 2013
  • Eco deck plate system is a construction method that deconstruction of galvanized steel sheets is possible by integrating steel-wire-integrated girders and the galvanized steel sheets with bolts. Therefore, compared with previous steel-wire-integrated deck plates which were joined by welding, the system is acknowledged as the construction method possible management and repair. This study conducted an experimental research by manufacturing total 24 full size specimens in a same condition for 12-shape specimens by two parts to evaluate structural behaviors of the eco deck plates. In the results after the test, permissible deflection for the construction load action was shown to be values under design values and satisfactory. The processing of lattice steel wires was presented to be structurally advantageous in being manufactured by cutting downward. Also, in case of a specimen that D13 as a steel wire was used, destruction occurred at the welding part of the bottom steel wire and the lattice steel wire, so improvement measures for the welding in factory manufacture are necessary.

Compression Behavior of Steel Plate-Concrete Structures with the Width-to-Thickness Ratio (폭두께비에 따른 강판콘크리트구조의 압축거동)

  • Han, Hong-Soo;Choi, Byong-Jeong;Han, Kweon-Gyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.229-236
    • /
    • 2011
  • This study was conducted to understand the characteristics of the compression behavior of steel plate-concrete(SC) structures with a width-to-thickness ratio under axial loading. SC structures are structural systems where concrete is poured into steel plates to which headed stud bolts had been attached inside. The specimens were classified according to the two width-to-thickness (W/T) ratios of 1.60 and 3.56. Through these experiments, the following conclusions could be arrived at. The fracture pattern of the specimens showed that steel plate buckling occurred between the stud lines, and that a crack occurred at the concrete spalling from the sides of the concrete before the system reached the maximum compressive strength. The maximum compressive strength of the specimens was larger than that of the existing equations (AISC 2005, ACI 318-05, and KBC 2005). With the increased W/T ratio of the specimens, the strength of the concrete core was decreased to account for the confinement effects from the steel plates.