• 제목/요약/키워드: steel fiber volume fraction

검색결과 167건 처리시간 0.025초

Flexural behavior of concrete beams reinforced with different types of fibers

  • Kh., Hind M.;Ozakca, Mustafa;Ekmekyapar, Talha;Kh., Abdolbaqi M.
    • Computers and Concrete
    • /
    • 제18권5호
    • /
    • pp.999-1018
    • /
    • 2016
  • Enhanced tensile properties of fiber reinforced concrete make it suitable for strengthening of reinforced concrete elements due to their superior corrosion resistance and high tensile strength properties. Recently, the use of fibers as strengthening material has increased motivating the development of numerical tools for the design of this type of intervention technique. This paper presents numerical analysis results carried out on a set of concrete beams reinforced with short fibers. To this purpose, a database of experimental results was collected from an available literature. A reliable and simple three-dimensional Finite Element (FE) model was defined. The linear and nonlinear behavior of all materials was adequately modeled by employing appropriate constitutive laws in the numerical simulations. To simulate the fiber reinforced concrete cracking tensile behavior an approach grounded on the solid basis of micromechanics was used. The results reveal that the developed models can accurately capture the performance and predict the load-carrying capacity of such reinforced concrete members. Furthermore, a parametric study is conducted using the validated models to investigate the effect of fiber material type, fiber volume fraction, and concrete compressive strength on the performance of concrete beams.

Shear performance of an innovative UHPFRC deck of composite bridge with coarse aggregate

  • Qi, Jianan;Wanga, Jingquan;Feng, Yu
    • Advances in concrete construction
    • /
    • 제7권4호
    • /
    • pp.219-229
    • /
    • 2019
  • This paper presents an experimental study on the structural performance of an innovative ultra-high performance fiber reinforced concrete (UHPFRC) deck with coarse aggregate of composite bridge under shear force. Test parameters included curing method and shear span-to-height ratio. Test results indicated that more short fine cracks developed beside the existing cracks due to the randomly dispersed fibers, resulting in re-distributing and homogenizing of the concrete stress beside cracks and allowing for the occurrence of more cracks with small spacing compared to normal strength concrete beams. Curing methods, incorporating steam curing and natural curing, did not have obvious effect on the nominal bending cracking strength and the ultimate strength of the test specimens. Shear reinforcement need not be provided for UHPFRC decks with a fiber volume fraction of 2%. UHPFRC decks showed superior load resistance ability after the appearance of cracks and excellent post-cracking deformability. Lastly, the current shear provisions were evaluated by the test results.

Mode-I fracture toughness of carbon fiber/epoxy composites interleaved by aramid nonwoven veils

  • Beylergil, Bertan;Tanoglu, Metin;Aktas, Engin
    • Steel and Composite Structures
    • /
    • 제31권2호
    • /
    • pp.113-123
    • /
    • 2019
  • In this study, carbon fiber/epoxy (CF/EP) composites were interleaved with aramid nonwoven veils with an areal weight density of $8.5g/m^2$ to improve their Mode-I fracture toughness. The control and aramid interleaved CF/EP composite laminates were manufactured by VARTM in a [0]4 configuration. Tensile, three-point bending, compression, interlaminar shear, Charpy impact and Mode-I (DCB) fracture toughness values were determined to evaluate the effects of aramid nonwoven fabrics on the mechanical performance of the CF/EP composites. Thermomechanical behavior of the specimens was investigated by Dynamic Mechanical Analysis (DMA). The results showed that the propagation Mode-I fracture toughness values of CF/EP composites can be significantly improved (by about 72%) using aramid nonwoven fabrics. It was found that the main extrinsic toughening mechanism is aramid microfiber bridging acting behind the crack-tip. The incorporation of these nonwovens also increased interlaminar shear and Charpy impact strength by 10 and 16.5%, respectively. Moreover, it was revealed that the damping ability of the composites increased with the incorporation of aramid nonwoven fabrics in the interlaminar region of composites. On the other hand, they caused a reduction in in-plane mechanical properties due to the reduced carbon fiber volume fraction, increased thickness and void formation in the composites.

0.015% C-1.5% Mn-0~0.5% Mo 강의 어닐링과정에서 미세조직과 집합조직의 변화 (Changes in Microstructure and Texture during Annealing of 0.015% C-1.5% Mn-0~0.5% Mo Steels)

  • 정우창
    • 열처리공학회지
    • /
    • 제24권5호
    • /
    • pp.251-261
    • /
    • 2011
  • The changes in microstructure and texture during annealing were examined in a series of 0.015% C-1.5% Mn cold-rolled sheet steels with 0~0.5% Mo. Orientation distribution function data were calculated from the (110), (200), (211) pole figures determined on the rolled plane of cold-rolled and annealed steel sheets. Regardless of Mo content and annealing conditions, martensite volume fraction was less than 1.0%, not affecting the texture evolution. Textural change at the cooling stage after heating at $820^{\circ}C$ for 67 sec was not observed. Increasing the Mo content and annealing temperature markedly strengthened the intensities of ${\gamma}$-fiber texture, resulting in the increase in $r_m$ value. The desirable texture evolution for deep drawability in the 0.5% Mo steel may be mainly caused by the grain refining effect of Mo carbide in the hot-rolled steel sheet.

Structural behavior of concrete walls reinforced with ferrocement laminates

  • Shaheen, Yousry B.I.;Refat, Hala M.;Mahmoud, Ashraf M.
    • Structural Engineering and Mechanics
    • /
    • 제78권4호
    • /
    • pp.455-471
    • /
    • 2021
  • The present work focuses on experimental and numerical performance of the ferrocement RC walls reinforced with welded steel mesh, expanded steel mesh, fiber glass mesh and tensar mesh individually. The experimental program comprised twelve RC walls having the dimensions of 450 mm×100 mm×1000 mm under concentric compression loadings. The studied variables are the type of reinforcing materials, the number of mesh layers and volume fraction of reinforcement. The main aim is to assess the influence of engaging the new inventive materials in reinforcing the composite RC walls. Non-linear finite element analysis; (NLFEA) was carried out to simulate the behavior of the composite walls employing ANSYS-10.0 Software. Parametric study is also demonstrated to check out the variables that can mainly influence the mechanical behavior of the model such as the change of wall dimensions. The obtained numerical results indicated the acceptable accuracy of FE simulations in the estimation of experimental values. In addition, the strength gained of specimens reinforced with welded steel mesh was higher by amount 40% compared with those reinforced with expanded steel mesh. Ferrocement specimens tested under axial compression loadings exhibit superior ultimate loads and energy absorbing capacity compared to the conventional reinforced concrete one.

하이브리드 PVA 섬유를 이용한 HPFRCCs의 휨 및 충격 성능 평가 (Flexural and Impact Resisting Performance of HPFRCCs Using Hybrid PVA Fibers)

  • 김영우;민경환;양준모;윤영수
    • 콘크리트학회논문집
    • /
    • 제21권6호
    • /
    • pp.705-712
    • /
    • 2009
  • 일반 콘크리트에 비해 많은 양의 섬유 혼입으로 인하여 상대적으로 연성적이고 인성적인 고성능 시멘트계 복합체는 극심한 하중을 받거나 내구성의 문제가 있는 곳에 사용될 수 있다. PVA 섬유를 사용하는 고성능 시멘트계 복합체의 경우 기존의 국내외 연구에 의하면, 2%의 섬유 혼입비에서 가장 높은 성능을 발휘한다고 알려져 있다. 따라서 이 연구에서는 PVA 섬유의 총 혼입비를 2%로 일정하게 유지시킨 채, 서로 다른 형상비를 가진 PVA 섬유를 사용하여 최적의 배합을 선정하고자 고성능 시멘트계 복합체의 휨 성능 실험을 실시하였다. 뿐만 아니라 이러한 고성능 시멘트계 복합체에 강섬유를 혼입하여 그 성능의 변화를 비교, 분석하였다. 또한 높은 변형률을 갖는 하중에 대하여 고성능 시멘트계 복합체의 거동을 확인하고자 충격 시험을 실시하였다. 이와 동시에 분사식 FRP를 도포한 고성능 시멘트계 복합체의 충격 저항 성능 역시 평가하였다. 위의 실험 결과 1.6%의 단섬유(REC15)와 0.4%의 장섬유 (RF4000)가 혼입된 시편이 휨 성능 및 충격 성능에 대해 탁월한 성능을 발휘하는 것을 확인할 수 있었다.

훅트강섬유보강 철근콘크리트보의 전단거동에 대한 실험적 연구 (Experimental Study on the Shear Behavior of Reinforced Hooked-Steel-Fiver Concrete Beams)

  • 심종성;이차돈;김규선;오홍섭
    • 콘크리트학회지
    • /
    • 제7권5호
    • /
    • pp.179-188
    • /
    • 1995
  • 강섬유보강콘크리트는 콘크리트의 취성을 극복하고 콘크리트 내의 강섬유의 구속작용과 균열제어메카니즘, pull-out저항 등에 의하여 강도가 증진되며 이러한 작용에 의하여 전단하중하에서도 강도와 연성의 증대를 가져온다. 강섬유보강콘크리트의 2차적인 보강효과는 휨보다는 전단거동에 대하여 더 효율적인 것으로 보고되고 있다. 따라서 시멘트계 재료에 훅트강섬유를 혼입함으로써 전단하중 하에서 훅트강섬유보강 철근콘크리트보(RHSFCB)의 전단저항력이 증가되고 결과적으로 보의 구조적 거동과 전단강도가 향상된다. 본 연구에서는 RHSFCB의 전단거동에 영향을 미치는 주요 변수들에 대한 각 영향을 실험적으로 고찰하였으며, 본 연구에서 고찰한 주요변수는 섬유혼입율, 전단-스팬비, 스터럽의 간격등이다. 이론적 고찰은 문헌에 보고된 각 전단강도 예측식들에 본 실험에서 전단파괴한 9개 시험체와 문헌에 나타난 86개의 전단파괴시험체를 적용하여 각 예측식들의 전단강도를 비교하였으며, 그 결과치를 통계분석하여전단강도예측식의 정확성을 고찰하였다.

초고성능 섬유보강 콘크리트로 보강된 콘크리트의 계면 전단강도 결정을 위한 경사전단 실험 (Slant Shear Test for Determining the Interfacial Shear Strength of Concrete Strengthened with Ultra-High Performance Fiber Reinforced Concrete)

  • 임우영;홍성걸
    • 콘크리트학회논문집
    • /
    • 제28권6호
    • /
    • pp.637-646
    • /
    • 2016
  • 이 연구에서는 강섬유 보강 초고성능 콘크리트(Ultra-high performance fiber reinforced concrete, 이하 UHPFRC)로 보강된 콘크리트 계면에서의 전단강도 평가를 위한 경사전단실험을 수행하였다. 실험변수는 면처리 유무와 콘크리트 강도, 그리고 UHPFRC의 강섬유 혼입률이다. 콘크리트의 계면은 숏블라스팅으로 면처리되었다. 실험결과, 숏블라스팅으로 면처리된 실험체의 계면 전단강도는 매끄러운 표면을 가진 실험체의 부착강도에 비해 매우 크게 나타났으며, 거친면을 만들기 위한 숏블라스팅 방법은 매우 효과적인 방법인 것으로 나타났다. 숏블라스팅으로 표면처리를 할 경우, 전단마찰 철근이 없더라도 콘크리트 계면에서 저항하는 전단강도는 현행 기준에서 제시하고 전단강도 상한값을 초과하는 것으로 나타났다. 기존의 콘크리트와 UHPFRC 사이의 전단마찰 설계는 전단마찰 철근의 유무와 상관없이 현행 콘크리트 구조기준을 사용해도 무방할 것으로 판단된다. 다만, 면처리를 하지 않은 경우에는 적절한 전단 보강재가 추가 설치하여야 할 것이다.

Characterizing buckling behavior of matrix-cracked hybrid plates containing CNTR-FG layers

  • Lei, Zuxiang;Zhang, Yang
    • Steel and Composite Structures
    • /
    • 제28권4호
    • /
    • pp.495-508
    • /
    • 2018
  • In this paper, the effect of matrix cracks on the buckling of a hybrid laminated plate is investigated. The plate is composed of carbon nanotube reinforced functionally graded (CNTR-FG) layers and conventional fiber reinforced composite (FRC) layers. Different distributions of single walled carbon nanotubes (SWCNTs) through the thickness of layers are considered. The cracks are modeled as aligned slit cracks across the ply thickness and transverse to the laminate plane, and the distribution of cracks is assumed statistically homogeneous corresponding to an average crack density. The first-order shear deformation theory (FSDT) is employed to incorporate the effects of rotary inertia and transverse shear deformation, and the meshless kp-Ritz method is used to obtain the buckling solutions. Detailed parametric studies are conducted to investigate the effects of matrix crack density, CNTs distributions, CNT volume fraction, plate aspect ratio and plate length-to-thickness ratio, boundary conditions and number of layers on buckling behaviors of hybrid laminated plates containing CNTR-FG layers.

Mode II Fracture Toughness of Hybrid FRCs

  • Abou El-Mal, H.S.S.;Sherbini, A.S.;Sallam, H.E.M.
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권4호
    • /
    • pp.475-486
    • /
    • 2015
  • Mode II fracture toughness ($K_{IIc}$) of fiber reinforced concrete (FRC) has been widely investigated under various patterns of test specimen geometries. Most of these studies were focused on single type fiber reinforced concrete. There is a lack in such studies for hybrid fiber reinforced concrete. In the current study, an experimental investigation of evaluating mode II fracture toughness ($K_{IIc}$) of hybrid fiber embedded in high strength concrete matrix has been reported. Three different types of fibers; namely steel (S), glass (G), and polypropylene (PP) fibers were mixed together in four hybridization patterns (S/G), (S/PP), (G/PP), (S/G/PP) with constant cumulative volume fraction ($V_f$) of 1.5 %. The concrete matrix properties were kept the same for all hybrid FRC patterns. In an attempt to estimate a fairly accepted value of fracture toughness $K_{IIc}$, four testing geometries and loading types are employed in this investigation. Three different ratios of notch depth to specimen width (a/w) 0.3, 0.4, and 0.5 were implemented in this study. Mode II fracture toughness of concrete $K_{IIc}$ was found to decrease with the increment of a/w ratio for all concretes and test geometries. Mode II fracture toughness $K_{IIc}$ was sensitive to the hybridization patterns of fiber. The (S/PP) hybridization pattern showed higher values than all other patterns, while the (S/G/PP) showed insignificant enhancement on mode II fracture toughness ($K_{IIc}$). The four point shear test set up reflected the lowest values of mode II fracture toughness $K_{IIc}$ of concrete. The non damage defect concept proved that, double edge notch prism test setup is the most reliable test to measure pure mode II of concrete.