DOI QR코드

DOI QR Code

Flexural and Impact Resisting Performance of HPFRCCs Using Hybrid PVA Fibers

하이브리드 PVA 섬유를 이용한 HPFRCCs의 휨 및 충격 성능 평가

  • Kim, Young-Woo (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Min, Kyung-Hwan (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Yang, Jun-Mo (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Yoon, Young-Soo (School of Civil, Environmental and Architectural Engineering, Korea University)
  • 김영우 (고려대학교 건축.사회환경공학부) ;
  • 민경환 (고려대학교 건축.사회환경공학부) ;
  • 양준모 (고려대학교 건축.사회환경공학부) ;
  • 윤영수 (고려대학교 건축.사회환경공학부)
  • Published : 2009.12.31

Abstract

HPFRCCs (high-performance fiber reinforced cementitious composites), which is relatively more ductile and has the characteristic of high toughness with high fiber volume fractions, can be used in structures subjected to extreme loads and exposed to durability problems. In the case of PVA (polyvinyl alcohol) fiber, it is noted by former studies that around 2% fiber volume fractions contributes to the most effective performance at HPFRCCs. In this study, flexural tests were carried out to evaluate the flexural behavior of HPFRCCs and to optimize mix proportions. Two sets of hybrid fiber reinforced high performance specimens with total fiber volume fraction of 2 % were tested: the first set prepared by addition of short and long PVA fibers at different combination of fiber volume fractions, and the second set by addition of steel. In addition, in order to assess the performances of the HPFRCCs against to high strain rates, drop weight tests were conducted. Lastly, the sprayed FRP was applied on the bottom surface of specimens to compare their impact responses with non-reinforcing specimens. The experimental results showed that the specimen prepared with 1.6% short fibers (REC 15) and 0.4% long fiber (RF4000) outperformed the other specimens under flexure, and impact loading.

일반 콘크리트에 비해 많은 양의 섬유 혼입으로 인하여 상대적으로 연성적이고 인성적인 고성능 시멘트계 복합체는 극심한 하중을 받거나 내구성의 문제가 있는 곳에 사용될 수 있다. PVA 섬유를 사용하는 고성능 시멘트계 복합체의 경우 기존의 국내외 연구에 의하면, 2%의 섬유 혼입비에서 가장 높은 성능을 발휘한다고 알려져 있다. 따라서 이 연구에서는 PVA 섬유의 총 혼입비를 2%로 일정하게 유지시킨 채, 서로 다른 형상비를 가진 PVA 섬유를 사용하여 최적의 배합을 선정하고자 고성능 시멘트계 복합체의 휨 성능 실험을 실시하였다. 뿐만 아니라 이러한 고성능 시멘트계 복합체에 강섬유를 혼입하여 그 성능의 변화를 비교, 분석하였다. 또한 높은 변형률을 갖는 하중에 대하여 고성능 시멘트계 복합체의 거동을 확인하고자 충격 시험을 실시하였다. 이와 동시에 분사식 FRP를 도포한 고성능 시멘트계 복합체의 충격 저항 성능 역시 평가하였다. 위의 실험 결과 1.6%의 단섬유(REC15)와 0.4%의 장섬유 (RF4000)가 혼입된 시편이 휨 성능 및 충격 성능에 대해 탁월한 성능을 발휘하는 것을 확인할 수 있었다.

Keywords

References

  1. 김영우, 민경환, 양준모, 윤영수, “하이브리드 PVA 섬유를 이용한 HPFRCC의 휨 성능 평가,” 한국콘크리트학회봄 학술대회 논문집, 20권, 2호, 2008, pp. 753-756 https://doi.org/10.4334/JKCI.2009.21.6.705
  2. 한병찬, 권영진, 김재환, “화재온도를 받는 고인성·고내화성 시멘트 복합체의 거동,” 콘크리트학회 논문집, 19권, 2호, 2007, pp. 189-197
  3. 김윤용, 김정수, 하기주, 김진근, “고로슬래그미분말이 혼입된 ECC(Engineered Cementitious Composite)의 개발,” 콘크리트학회 논문집, 18권, 1호, 2006, pp. 21-28 https://doi.org/10.4334/JKCI.2006.18.1.021
  4. 윤현도, 양승일, 한병찬, 전에스더, 김선우, “고인성 섬유보강 시멘트 복합체의 인장강성 특성에 관한 실험적 연구,” 대한건축학회논문집 구조계, 21권, 10호, 2005, pp. 27-36
  5. 김무한, 김재환, 김용로, 김영덕, “마이크로 및 매크로 섬유에 의해 보강된 고인성 시멘트 복합재료의 역학적 특성에 관한 실험적 연구,” 콘크리트학회 논문집, 17권, 2호, 2005, pp. 263-271 https://doi.org/10.4334/JKCI.2005.17.2.263
  6. 김윤용, 김정수, 김희신, 하기주, 김진근, “마이크로역학에 의하여 설계된 ECC (engineered cementitious composite)의 역학적 특성,” 콘크리트학회논문집, 17권, 5호, 2005, pp. 709-716 https://doi.org/10.4334/JKCI.2005.17.5.709
  7. Li, V. C., “Engineered Cementitious Composites,” Proceedings of Third International Conference on Construction Materials (CONMAT'05), D-documents /1-05-SS-GF01_FP.pdf, Vancouver, Canada, 2005
  8. Li, V. C., “On Engineered Cementitious Composites (ECC).A Review of the Material and Its Applications,” Journal of Advanced Concrete Technology, Vol. 1, No. 3, 2003, pp. 215-230 https://doi.org/10.3151/jact.1.215
  9. Naaman, A. E. and Reinhardt, H. W., “Characterization of High Performance Fiber Reinforced Cement Composites (HPFRCC),” Proceedings of the Second International RILEM Workshop (HPFRCC 2), Ann Arbor, USA, 1995, pp. 1-23
  10. Li, V. C., Wang, S., and Wu, C., “Tensile Strain-hardening Behavior of Polyvinyl Alcohol Engineered Cementitious Composite (PVA-ECC),” ACI Material Journal, Vol. 98, No. 6, 2001, pp. 483-492
  11. Zhang, J., Leung, C. K. Y., and Cheung, Y. N., “Flexural Performance of Layered ECC-Concrete Composite Beam,” Composites Science and Technology, Vol. 66, Issues 11-12, 2006, pp. 1501-1512 https://doi.org/10.1016/j.compscitech.2005.11.024
  12. Habel, K. and Gauvreau, P., “Response of Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) to Impact and Static Loading,” Cement and Composites, Vol. 30, Issue 10, 2008, pp. 938-946 https://doi.org/10.1016/j.cemconcomp.2008.09.001
  13. Bindiganavile, V., Banthia, N., and Aarup, B., “Impact Response of Ultra-High-Strength Fiber-reinforced Cement Composite,” ACI Material Journal, Vol. 99, No. 6, 2002, pp. 543-548
  14. Mindess, S., Chen, L., and Morgan, D. R., “Determination of the First-Crack Strength and Flexural Toughness of Steel Fiber-Reinforced Concrete,” Advanced Cement Based Materials, Vol. 1, 1994, pp. 201-208 https://doi.org/10.1016/1065-7355(94)90025-6
  15. Nataraja, M. C., Dhang, N., and Gupta, A. P., “Statistical Variations in Impact Resistance of Steel Fiber-reinforced Concrete Subjected to Drop Weight Test,” Cement and Concrete Research, Vol. 29, No. 7, 1999, pp. 989-995 https://doi.org/10.1016/S0008-8846(99)00052-6
  16. 한승철, 양준모, 윤영수, “분사식 FRP에 의한 구조물의 보강 성능 및 반발률 평가,” 구조물진단학회지, 12권, 1호, 2008, pp. 193-202
  17. 이강석, 변인희, 이문성, “Sprayed FRP로 보강된 철근 콘크리트 전단기둥의 보강성능 평가,” 구조물진단학회지, 11권, 3호, 2007, pp. 132-142
  18. Banthia, N. and Boyd, A. J., “Sprayed Fibre-reinforced Polymers for Repairs,” Canadian Journal of Civil Engineering, Vol. 27, No. 5, 2000, pp. 907-915 https://doi.org/10.1139/cjce-27-5-907
  19. ASTM C 1609, “Standard Test Method for Flexural Toughness and First-Crack Strength of Fiber-reinforced Concrete,” American Society for Testing and Materials, 2007
  20. Japan Society of Civil Engineers JSCE-SF4, “Method of Test for Flexural Strength and Flexural Toughness of Steel Fiber Reinforced Concrete,” Concrete Library International, Part III-2, No. 3, 1984, pp. 58-61

Cited by

  1. Evaluating Local Damages and Blast Resistance of RC Slabs Subjected to Contact Detonation vol.17, pp.1, 2013, https://doi.org/10.11112/jksmi.2013.17.1.037
  2. Static Bending Strength Performance of Domestic Wood-Concrete Hybrid Laminated Materials vol.44, pp.1, 2016, https://doi.org/10.5658/WOOD.2016.44.1.48
  3. Simple Bond Stress and Slip Relationship between CFRP Plank and Cast-in-Place DFRCC vol.7, pp.1, 2016, https://doi.org/10.11004/kosacs.2016.7.1.025
  4. Flexural and Impact Resisting Performance of HPFRCCs Using Hybrid PVA Fibers vol.21, pp.6, 2009, https://doi.org/10.4334/JKCI.2009.21.6.705
  5. Tension Stiffening of Reinforced High Performance Fiber Reinforced Cementitious Composites (HPFRCC) vol.22, pp.6, 2010, https://doi.org/10.4334/JKCI.2010.22.6.859
  6. Indeterminate Strut-Tie Model and Load Distribution Ratio of Continuous RC Deep Beams (I) Proposal of Model & Load Distribution Ratio vol.23, pp.1, 2011, https://doi.org/10.4334/JKCI.2011.23.1.003
  7. Flexural and Punching Behaviors of Concrete Strengthening with FRP Sheets and Steel Fibers under Low-Velocity Impact Loading vol.23, pp.1, 2011, https://doi.org/10.4334/JKCI.2011.23.1.031
  8. Evaluation on the Impact Resistant Performance of Fiber Reinforced Concrete by High-Velocity Projectile and Contacted Explosion vol.25, pp.1, 2013, https://doi.org/10.4334/JKCI.2013.25.1.107
  9. Punching and Local Damages of Fiber and FRP Reinforced Concrete under Low-Velocity Impact Load vol.08, pp.01, 2018, https://doi.org/10.4236/ojce.2018.81006