• Title/Summary/Keyword: steel construction

Search Result 4,383, Processing Time 0.027 seconds

RISK ANALYSIS FOR INDUSTRIAL PROJECT IN CONSTRUCTION PHASE: A MONTE-CARLO SIMULATION APPROACH

  • Soo-Yong Kim;Luu Truong Van;Han-Ki Ha;Nguyen Quoc Tuan
    • International conference on construction engineering and project management
    • /
    • 2007.03a
    • /
    • pp.130-139
    • /
    • 2007
  • This paper presents a study on risk analysis in terms of contractor's costs in construction phase in which Crystal ball (software of Decisioneering, UK) has been utilized as a main tool. To realize it, a questionnaire survey has been carried out to identify the dominant factors that strongly influence contractor costs in Vietnam. Based on results of questionnaire investigation, the survey identified three factors which were duration of each construction task, costs of reinforcing steel, and cement. Then a spreadsheet model was created in order to analyze risks. The study also indicates that the cost of reinforcing steel and cement are the cause of risks for contractors. According to the suggested model, contractors may foresee the probability of completion within the approved budget, and the possibility of earning in accordance with owner's payment conditions.

  • PDF

Behaviors According to the Reinforcing Method of the Support Diaphragm Manhole in Steel Box Girder Bridge (강박스거더 지점부 다이아프램 맨홀의 보강방법에 따른 거동)

  • Lee, Seong Haeng;Kim, Kyoung Nam;Jung, Kyoung Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.649-660
    • /
    • 2005
  • Since the diaphragm manhole of steel box girder bridges is designed generally from experience, it has become the primary factor in the excessive cost of steel bridge construction. For the economical and efficient manufacture of diaphragm manholes, it is necessary to study the exact behavior of the diaphragm manhole in a steel box girder bridge. In this study, both an experimental test and a structural analysis are performed to verify the behavior of the diaphragm manhole in a steel box girder bridge. A detailed structural analysis was performed according to various diaphragm manhole shapes, and in conclusion, the suitable reinforcement method for the support of diaphragm manholes in steel box bridges is presented.

Stress variation analysis based on temperature measurements at Zhuhai Opera House

  • Lu, Wei;Teng, Jun;Qiu, Lihang;Huang, Kai
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.1-13
    • /
    • 2018
  • The Zhuhai Opera House has an external structure consisting of a type of spatial steel, where the stress of steel elements varies with the ambient temperature. A structural health monitoring system was implemented at Zhuhai Opera House, and the temperatures and stresses of the structures were monitored in real time. The relationship between the stress distribution and temperature variations was analysed by measuring the temperature and stresses of the steel elements. In addition to measurements of the structure stresses and temperatures, further simulation analysis was carried out to provide the detailed relationship between the stress distributions and temperature variations. The limited temperature measurements were used to simulate the structure temperature distribution, and the stress distributions of all steel elements of the structure were analysed by building a finite element model of the Zhuhai Opera House spatial steel structure. This study aims to reveal the stress distributions of steel elements in a real-world project based on temperature variations, and to supply a basic database for the optimal construction time of a spatial steel structure. This will not only provide convenient, rapid and safe early warnings and decision-making for the spatial steel structure construction and operation processes, but also improve the structural safety and construction accuracy of steel space structures.

Capacity evaluation of PC-slab composite actions for the railway steel plate girder according to an experimental construction (PC-Slab 합성 철도판형교 유도상화 시험부설에 따른 성능 비교평가)

  • Min, Kyung-Ju;Lee, Sung-Uk;Choi, Hyung-Soo;Woo, Yong-Keun
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.697-706
    • /
    • 2011
  • There are more than 800 railway steel plate girder bridges which are in use and the total length is approximately 50 km. Among these, it shall be pointed out that non-ballast rail systems which lay on wood sleepers are the most critical members. To strengthen this type of structures, mainly two methods have been applied. The first one is the most typical method which is to replace the girders with slab girder system or steel composite girders and to add ballast. It is not uncommon that the construction cost of substructure is more than ten time higher than that of superstructures and even in this case, the structural uncertainty for the substructures is not diminished. To resolve above mentioned problems, new method was developed to rehabilitate railway steel girder bridge by adding PC-slab using transport equipment. Using this method, substructure strengthen is rarely required because the additional weight to the bridge superstructure is only up to 1.0t/m. Also it was possible to save the construction cost by reducing construction duration and by simplifying the construction process. Experimental construction was performed for Jewon bridge and measurements were performed before and after construction to verify the bridge capacity.

  • PDF

Causes of Delay in Khuzestan Steel Company Construction Projects

  • Saeb, Sajjad;Khayat, Navid;Telvari, Abdulrasoul
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.4
    • /
    • pp.335-344
    • /
    • 2016
  • Construction project is a competitive business with high risk especially in developing countries like Iran which faces with many problems such as delay and time and costs increases. Thus, the first priority here is to determine the causes of prolongation of construction projects and to evaluate their importance. Khuzestan Steel Company (KSC) has made important contribution to the projects in Iran and in turn is required to finish them on time. In this study, an attempt was made to investigate the causes of delay in implementation of construction projects held by this company. Data was collected through questionnaire distributed among the sample including 10 owners, 10 consultants and 15 con-tractors. Accordingly, participants rated the causes in the questionnaire so the most important priorities of each area were specified using TOPSIS method. The results showed that according to the employers, consultants and contractors' viewpoints, the most important reason for delays in construction projects of KSC is related to the financial matters. Hence, according to the results obtained, causes for delays in the company's projects are largely related to the drilling permits and long administrative cycle to renew them. Besides, continuous production of steel in this company is another reason to delays of construction projects.

Effect of hybrid polypropylene-steel fibres on strength characteristics of UHPFRC

  • Nuaklong, Peem;Chittanurak, Jithaporn;Jongvivatsakul, Pitcha;Pansuk, Withit;Lenwari, Akhrawat;Likitlersuang, Suched
    • Advances in concrete construction
    • /
    • v.10 no.1
    • /
    • pp.1-11
    • /
    • 2020
  • This study intends to produce an ultra-high performance fibre reinforced concrete (UHPFRC) made with hybrid fibres (i.e., steel and polypropylene). Compressive and tensile strength characteristics of the hybrid fibres UHPFRC are considered. A total of 14 fibre-reinforced composites (FRCs) with different fibre contents or types of fibres were prepared and tested in order to determine a suitable hybrid fibre combination. The compressive and tensile strengths of each concrete at 7 days were determined. The results showed that a hybrid mix of micro-polypropylene and steel fibres exhibited good compromising performances and is the ideal reinforcement mixture in a strong, cost-effective UHPFRC. In addition, maximum compressive strength of 167 MPa was achieved for UHPFRC using 1.5% steel fibres blended with 0.5% macro-polypropylene fibres.

Experimental Analysis of the fixed socket strength of a removable soil nail (제거식 쏘일네일의 고정자소켓 강도에 관한 실험적 해석)

  • Kim, Nak-Kyung;Kim, Sung-Kyu;Yun, Seung-Kwon;Cho, Kyu-Wan;Kim, Woong-Kyu;Lee, Chung-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1250-1253
    • /
    • 2008
  • As a reinforcement technique, the application of removable soil nailing has been extended to solve the public grievance of typical soil nailing such as the geotechnical environmental problem and invasion of adjacent land. In the case of removable soil nailing, pullout capacity of the nail depends on the adhesive strength of a fixed socket. Because the existing fixed socket is made from a plastic product, the strength of a socket is less than a steel bar and then the yield failure by abrasion and deformation is occurred on the steel bar-socket contact surface. In this study, therefore, experimental analysis from laboratory test of a removable soil nail equipped with steel socket, improving the adhesive strength of steel bar-socket connection is performed to estimate the increase effect of pullout capacity of a soil nail.

  • PDF

Unit Cost Prediction Model Development for the Domestic Reinforced Bar using System Dynamics

  • Ko, Yongho;Choi, Seungho;Kim, Youngsuk;Han, Seungwoo
    • Journal of Construction Engineering and Project Management
    • /
    • v.3 no.2
    • /
    • pp.13-20
    • /
    • 2013
  • Construction industry has become a larger and highly competitive industry. A successful construction project cannot be achieved only by efficient and fast construction techniques but also reasonable material cost and adequate transferring time of materials to installation. The steel industry in East Asia has become the mainstream in overall steel industries in over the world during the middle of the 21st century. China, Japan and Korea has been the main exportation countries. However, even though the international economic failure, China has increased the exportation amount and became an only exporting country which must be considered a serious problem regarding competitiveness in the international steel exportation industry. Thus, this study analyses the factors affecting the supply and demand amount of reinforced bars in the domestic field and moreover suggesting a unit cost prediction model using the System Dynamics simulation methodology, one of powerful prediction tools using cause-effect relationships. It is expected that this study contributes to the domestic steel industry growth in competitiveness in the international industry. In addition, the methodology used in this paper presents the frameworks for appropriate tools for market trend analysis and prediction of other markets.

Effects of Mixing Fiber Types on Electromagnetic Wave Shielding Effectiveness of Mortar (혼입섬유에 따른 모르타르의 전자파 차폐 효과)

  • Kim, Young-Jun;Yi, Chongku
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.150-151
    • /
    • 2015
  • In this study, the electromagnetic shielding performance of mortar with different metal fiber, as part of the development of a electromagnetic shielding construction material, was measured according to KS C 0304. The results showed that the amorphous steel fibers can shield electromagnetic effectively than the oter conventional steel fibers. The superior performance of the amorphous steel fiber may be attributed its plate shape geometry.

  • PDF

Analytical Study for Ultimate Behavior of Steel Cable-stayed Bridges under Construction Stage (시공중 강사장교의 극한거동에 대한 해석적 연구)

  • Lee, Joo-Tak;Kim, Seung-Jun;Kim, Jong-Min;Choi, Jun-Ho;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.6
    • /
    • pp.691-704
    • /
    • 2011
  • This paper presents an investigation on the ultimate behavior of steel cable-stayed bridges in the construction stage, considering various geometric nonlinearities and material nonlinearities. To numerically determine the state of cable-stayed bridges in the construction stage, initial shape analysis and construction stage analysis via backward process analysis were done sequentially. Then nonlinear analysis of the state under the construction load condition, considering the weight of the derrick crane and the key segment of the girder loaded onto the tip of the center span, was performed to investigate the ultimate behavior of the structure. The effects of the girder-mast stiffness ratio, the cable-arrangement types, and the area of the stay cables on the ultimate behavior were also extensively investigated. Moreover, the results of the ultimate analysis, considering both geometric nonlinearities and material nonlinearities, were compared with the results of the geometric nonlinear analysis, for a more meaningful investigation of the ultimate behavior of steel cable-stayed bridges in the construction stage.