Browse > Article
http://dx.doi.org/10.12989/acc.2020.10.1.001

Effect of hybrid polypropylene-steel fibres on strength characteristics of UHPFRC  

Nuaklong, Peem (Innovative Construction Materials Research Unit, Department of Civil Engineering, Faculty of Engineering, Chulalongkorn University)
Chittanurak, Jithaporn (Innovative Construction Materials Research Unit, Department of Civil Engineering, Faculty of Engineering, Chulalongkorn University)
Jongvivatsakul, Pitcha (Innovative Construction Materials Research Unit, Department of Civil Engineering, Faculty of Engineering, Chulalongkorn University)
Pansuk, Withit (Innovative Construction Materials Research Unit, Department of Civil Engineering, Faculty of Engineering, Chulalongkorn University)
Lenwari, Akhrawat (Composite Structures Research Unit, Department of Civil Engineering, Faculty of Engineering, Chulalongkorn University)
Likitlersuang, Suched (Centre of Excellence in Geotechnical and Geoenvironmental Engineering, Department of Civil Engineering, Faculty of Engineering, Chulalongkorn University)
Publication Information
Advances in concrete construction / v.10, no.1, 2020 , pp. 1-11 More about this Journal
Abstract
This study intends to produce an ultra-high performance fibre reinforced concrete (UHPFRC) made with hybrid fibres (i.e., steel and polypropylene). Compressive and tensile strength characteristics of the hybrid fibres UHPFRC are considered. A total of 14 fibre-reinforced composites (FRCs) with different fibre contents or types of fibres were prepared and tested in order to determine a suitable hybrid fibre combination. The compressive and tensile strengths of each concrete at 7 days were determined. The results showed that a hybrid mix of micro-polypropylene and steel fibres exhibited good compromising performances and is the ideal reinforcement mixture in a strong, cost-effective UHPFRC. In addition, maximum compressive strength of 167 MPa was achieved for UHPFRC using 1.5% steel fibres blended with 0.5% macro-polypropylene fibres.
Keywords
ultra-high performance fibre reinforced concrete; steel fibre; polypropylene fibre; hybrid fibres; compressive strength; tensile strength;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 AFGC (2013), Recommendation: Ultra High Performance Fibre-Reinforced Concretes, French Association of Civl Engineering Structure Design, and Control, Bagneux, France.
2 Afroughsabet, V., Biolzi, L. and Monteiro, P.J. (2018), "The effect of steel and polypropylene fibers on the chloride diffusivity and drying shrinkage of high-strength concrete", Compos. Part B. Eng., 139, 84-96. https://doi.org/10.1016/j.compositesb.2017.11.047.   DOI
3 Afroughsabet, V., Geng, G., Lin, A., Biolzi, L., Ostertag, C.P. and Monteiro, P.J. (2019), "The influence of expansive cement on the mechanical, physical, and microstructural properties of hybrid-fiber-reinforced concrete", Cement Concrete Compos., 96, 21-32. https://doi.org/10.1016/j.cemconcomp.2018.11.012.   DOI
4 ASTM C109 (2016), Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens), American Society for Testing and Material, West Conshohocken, PA, USA.
5 ASTM C1611 (2014), Standard Test Method for Slump Flow of Self-Consolidating Concrete, American Society for Testing and Material, West Conshohocken, PA, USA.
6 ASTM C305 (2014), Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency, American Society for Testing and Material, West Conshohocken, PA, USA.
7 Banthia, N. and Gupta, R. (2004), "Hybrid fiber reinforced concrete (HyFRC): fiber synergy in high strength matrices", Mater. Struct., 37(10), 707-716. https://doi.org/10.1007/BF02480516.   DOI
8 Banthia, N. and Gupta, R. (2006), "Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete", Cement Concrete Res., 36(7), 1263-1267. https://doi.org/10.1016/j.cemconres.2006.01.010.   DOI
9 Di Maida, P., Radi, E., Sciancalepore, C. and Bondioli, F. (2015), "Pullout behavior of polypropylene macro-synthetic fibers treated with nano-silica", Constr. Build. Mater., 82, 39-44. https://doi.org/10.1016/j.conbuildmat.2015.02.047.   DOI
10 EFNARC (2005), The European Guidelines for Self-Compacting Concrete Specification, Production and Use, Surrey, UK.
11 Kabele, P. (2007), "Multiscale framework for modeling of fracture in high performance fiber reinforced cementitious composites", Eng. Fract. Mech., 74(1-2), 194-209. https://doi.org/10.1016/j.engfracmech.2006.01.020.   DOI
12 Ganesan, N., Sahana, R. and Indira, P.V. (2017), "Effect of hybrid fibers on tension stiffening of reinforced geopolymer concrete", Adv. Concrete Constr., 5(1), 75. https://doi.org/10.12989/acc.2017.5.1.75.   DOI
13 Habel, K., Viviani, M., Denarie, E. and Bruhwiler, E. (2006), "Development of the mechanical properties of an ultra-high performance fiber reinforced concrete (UHPFRC)", Cement Concrete Res., 36(7), 1362-1370. https://doi.org/10.1016/j.cemconres.2006.03.009.   DOI
14 Hannawi, K., Bian, H., Prince-Agbodjan, W. and Raghavan, B. (2016), "Effect of different types of fibers on the microstructure and the mechanical behavior of ultra-high performance fiber-reinforced concretes", Compos. Part B. Eng., 86, 214-220. https://doi.org/10.1016/j.compositesb.2015.09.059.   DOI
15 Hassan, A.M.T., Jones, S.W. and Mahmud, G.H. (2012), "Experimental test methods to determine the uniaxial tensile and compressive behaviour of ultra high performance fibre reinforced concrete (UHPFRC)", Constr. Build. Mater., 37, 874-882. https://doi.org/10.1016/j.conbuildmat.2012.04.030.   DOI
16 Huang, H., Gao, X., Li, L. and Wang, H. (2018), "Improvement effect of steel fiber orientation control on mechanical performance of UHPC", Constr. Build. Mater., 188, 709-721. https://doi.org/10.1016/j.conbuildmat.2018.08.146.   DOI
17 Kim, D.J., Park, S.H., Ryu, G.S. and Koh, K.T. (2011), "Comparative flexural behavior of hybrid ultra high performance fiber reinforced concrete with different macro fibers", Constr. Build. Mater., 25(11), 4144-4155. https://doi.org/10.1016/j.conbuildmat.2011.04.051.   DOI
18 Li, Y., Tan, K.H. and Yang, E.H. (2019), "Synergistic effects of hybrid polypropylene and steel fibers on explosive spalling prevention of ultra-high performance concrete at elevated temperature", Cement Concrete Compos., 96, 174-181. https://doi.org/10.1016/j.cemconcomp.2018.11.009.   DOI
19 Le Hoang, A. and Fehling, E. (2017), "Influence of steel fiber content and aspect ratio on the uniaxial tensile and compressive behavior of ultra high performance concrete", Constr. Build. Mater., 153, 790-806. https://doi.org/10.1016/j.conbuildmat.2017.07.130.   DOI
20 Li, B., Chi, Y., Xu, L., Shi, Y. and Li, C. (2018), "Experimental investigation on the flexural behavior of steel-polypropylene hybrid fiber reinforced concrete", Constr. Build. Mater., 191, 80-94. https://doi.org/10.1016/j.conbuildmat.2018.09.202.   DOI
21 Mehta, P.K. and Monteiro, P.J.M (2006), Concrete: Microstructure, Properties and Materials, McGraw-Hill Education, New York, NA, USA.
22 Midhun, M.S., Rao, T.G. and Srikrishna, T.C. (2018), "Mechanical and fracture properties of glass fiber reinforced geopolymer concrete", Adv. Concrete Constr., 6(1), 29. https://doi.org/10.12989/acc.2018.6.1.029.   DOI
23 Naaman, A.E. and Reinhardt, H.W. (2006), "Proposed classification of HPFRC composites based on their tensile response", Mater. Struct., 39(5), 547-555. https://doi.org/10.1617/s11527-006-9103-2.   DOI
24 Nili, M. and Afroughsabet, V. (2010), "The effects of silica fume and polypropylene fibers on the impact resistance and mechanical properties of concrete", Constr. Build. Mater., 24(6), 927-933. https://doi.org/10.1016/j.conbuildmat.2009.11.025.   DOI
25 Pakravan, H.R., Latifi, M. and Jamshidi, M. (2017), "Hybrid short fiber reinforcement system in concrete: A review", Constr. Build. Mater., 142, 280-294. https://doi.org/10.1016/j.conbuildmat.2017.03.059.   DOI
26 Qi, J., Wang, J. and Feng, Y. (2019), "Shear performance of an innovative UHPFRC deck of composite bridge with coarse aggregate", Adv. Concrete Constr., 7(4), 219-229. https://doi.org/10.12989/acc.2019.7.4.219.   DOI
27 Park, S.H., Ryu, G.S., Koh, K.T. and Kim, D.J. (2014), "Effect of shrinkage reducing agent on pullout resistance of high-strength steel fibers embedded in ultra-high-performance concrete", Cement Concrete Compos., 49, 59-69. https://doi.org/10.1016/j.cemconcomp.2013.12.012.   DOI
28 Pereira, E.B., Fischer, G. and Barros, J.A. (2012), "Effect of hybrid fiber reinforcement on the cracking process in fiber reinforced cementitious composites", Cement Concrete Compos., 34(10), 1114-1123. https://doi.org/10.1016/j.cemconcomp.2012.08.004.   DOI
29 Punurai, W., Kroehong, W., Saptamongkol, A. and Chindaprasirt, P. (2018), "Mechanical properties, microstructure and drying shrinkage of hybrid fly ash-basalt fiber geopolymer paste", Constr. Build. Mater., 186, 62-70. https://doi.org/10.1016/j.conbuildmat.2018.07.115.   DOI
30 Qian, C.X. and Stroeven, P. (2000), "Development of hybrid polypropylene-steel fibre-reinforced concrete", Cement Concrete Res., 30(1), 63-69. https://doi.org/10.1016/S0008-8846(99)00202-1.   DOI
31 Robins, P., Austin, S. and Jones, P. (2002), "Pull-out behaviour of hooked steel fibres", Mater. Struct., 35(7), 434-442. https://doi.org/10.1007/BF02483148.   DOI
32 Park, S.H., Kim, D.J., Ryu, G.S. and Koh, K.T. (2012), "Tensile behavior of ultra high performance hybrid fiber reinforced concrete", Cement Concrete Compos., 34(2), 172-184. https://doi.org/10.1016/j.cemconcomp.2011.09.009.   DOI
33 Shaikh, F.U.A. and Taweel, M. (2015), "Compressive strength and failure behaviour of fibre reinforced concrete at elevated temperatures", Adv. Concrete Constr., 3(4), 283-93. http://dx.doi.org/10.12989/acc.2015.3.4.283.   DOI
34 Song, P.S., Hwang, S. and Sheu, B.C. (2005), "Strength properties of nylon-and polypropylene-fiber-reinforced concretes", Cement Concrete Res., 35(8), 1546-1550. https://doi.org/10.1016/j.cemconres.2004.06.033.   DOI
35 Sharma, R. and Bansal, P.P. (2019), "Efficacy of supplementary cementitious material and hybrid fiber to develop the ultra high performance hybrid fiber reinforced concrete", Adv. Concrete Constr., 8(1), 21-31. https://doi.org/10.12989/acc.2019.8.1.021.   DOI
36 Shi, C., Wu, Z., Xiao, J., Wang, D., Huang, Z. and Fang, Z. (2015), "A review on ultra high performance concrete: Part I. Raw materials and mixture design", Constr. Build. Mater., 101, 741-751. https://doi.org/10.1016/j.conbuildmat.2015.10.088.   DOI
37 Song, P.S. and Hwang, S. (2004), "Mechanical properties of high-strength steel fiber-reinforced concrete", Constr. Build. Mater., 18(9), 669-673. https://doi.org/10.1016/j.conbuildmat.2004.04.027.   DOI
38 Toutanji, H., McNeil, S. and Bayasi, Z. (1998), "Chloride permeability and impact resistance of polypropylene-fiber-reinforced silica fume concrete", Cement Concrete Res., 28(7), 961-968. https://doi.org/10.1016/S0008-8846(98)00073-8.   DOI
39 Wille, K., El-Tawil, S. and Naaman, A.E. (2014), "Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading", Cement Concrete Compos., 48, 53-66. https://doi.org/10.1016/j.cemconcomp.2013.12.015.   DOI
40 Wille, K., Kim, D.J. and Naaman, A.E. (2011), "Strain-hardening UHP-FRC with low fiber contents", Mater. Struct., 44(3), 583-598. https://doi.org/10.1617/s11527-010-9650-4.   DOI
41 Wille, K., Naaman, A.E., El-Tawil, S. and Parra-Montesinos, G.J. (2012), "Ultra-high performance concrete and fiber reinforced concrete: achieving strength and ductility without heat curing", Mater. Struct., 45(3), 309-324. https://doi.org/10.1617/s11527-011-9767-0.   DOI
42 Yoo, D.Y., Shin, H.O., Yang, J.M. and Yoon, Y.S. (2014b), "Material and bond properties of ultra high performance fiber reinforced concrete with micro steel fibers", Compos. Part B. Eng., 58, 122-133. https://doi.org/10.1016/j.compositesb.2013.10.081.   DOI
43 Yao, W., Li, J. and Wu, K. (2003), "Mechanical properties of hybrid fiber-reinforced concrete at low fiber volume fraction", Cement Concrete Res., 33(1), 27-30. https://doi.org/10.1016/S0008-8846(02)00913-4.   DOI
44 Yoo, D.Y., Banthia, N., Kim, S.W. and Yoon, Y.S. (2015), "Response of ultra-high-performance fiber-reinforced concrete beams with continuous steel reinforcement subjected to low-velocity impact loading", Compos. Struct., 126, 233-245. https://doi.org/10.1016/j.compstruct.2015.02.058.   DOI
45 Yoo, D.Y., Kang, S.T. and Yoon, Y.S. (2014a), "Effect of fiber length and placement method on flexural behavior, tension-softening curve, and fiber distribution characteristics of UHPFRC", Constr. Build. Mater., 64, 67-81. https://doi.org/10.1016/j.conbuildmat.2014.04.007.   DOI
46 Yu, R., Spiesz, P. and Brouwers, H.J.H. (2014a), "Mix design and properties assessment of ultra-high performance fibre reinforced concrete (UHPFRC)", Cement Concrete Res., 56, 29-39. https://doi.org/10.1016/j.cemconres.2013.11.002.   DOI
47 Yu, R., Spiesz, P. and Brouwers, H.J.H. (2014b), "Static properties and impact resistance of a green Ultra-High Performance Hybrid Fibre Reinforced Concrete (UHPHFRC): experiments and modeling", Constr. Build. Mater., 68, 158-171. https://doi.org/10.1016/j.conbuildmat.2014.06.033.   DOI
48 Zhou, M., Lu, W., Song, J. and Lee, G.C. (2018), "Application of ultra-high performance concrete in bridge engineering", Constr. Build. Mater., 186, 1256-1267. https://doi.org/10.1016/j.conbuildmat.2018.08.036.   DOI