• Title/Summary/Keyword: steel box girder

Search Result 305, Processing Time 0.036 seconds

Effects of Flexural Strengths of Double Composite Box Girder Bridges on Different Concrete Depths (이중합성 박스 거더교의 콘크리트 타설 두께에 따른 휨강도 변화)

  • 신동훈;성원진;심기훈;최지훈;이용학
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.285-290
    • /
    • 2002
  • The double composite box girder is a structural system filled with concrete at the bottom of the steel box in the negative moment region increasing the flexural strengths. Flexural strengths of the double composite steel box girders are investigated through a series of the experimental tests and the numerical analysis. The experimental tests are performed on the three kinds of steel box girders with the different concrete depths including loom, 15cm, and 20cm. Moment-curvature relations are calculated based on the sectional analysis method describing the nonlinear natures of concrete and steel. In the finite element analysis the nonlinear nature of concrete is described based on the three dimensional four-parameter constitutive model recently developed and that of steel is described based on von Mises failure criterion. The ultimate flexural capacities of the box girders predicted using sectional analysis and finite element analysis show good agreement with those of the experiments.

  • PDF

Application of Narrow Steel Box Girder Bridge of Light Rail Transit with HR Plate (HR Plate의 경량전철 협폭박스거더교 적용)

  • Park, Dae-Su;Hwang, Nak-Yuen;Jung, Kyoung-Sup;Lee, Seong-Haeng
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.365-375
    • /
    • 2006
  • The HR Plates made hot rolled coils is lower than general structural steel plates in price. No difference between general steel plates and HR Plates with thickness up to 22mm are found in most characters such as cutting operation, fabrication and even welding. It can be concluded that HR Plates with thickness up to 22mm can be applied to flanges and webs of any girders as well as longitudinal ribs, longitudinal and vertical stiffeners of steel bridges appropriately. To increase the demand of HR Plates with thickness up to 22mm, it is necessary that HR Plates is applicable to full member in steel bridge including main girder.In this study, availabilities of the narrow steel box girder of light railway transit with HR Plate width as a main member are discussed. For application of HR Plate to steel bridge with 50m span or more, new support systems in three types are presented. Computational analysis is performed in 15 bridge models of light railway transit with beam element and plate element. As a analysis results, three models in light railway transit are presented. We finally come to the conclusion that HR Plates can be apply to narrow steel box girder in the light railway transit.

  • PDF

Space grid analysis method in modelling shear lag of cable-stayed bridge with corrugated steel webs

  • Ma, Ye;Ni, Ying-Sheng;Xu, Dong;Li, Jin-Kai
    • Steel and Composite Structures
    • /
    • v.24 no.5
    • /
    • pp.549-559
    • /
    • 2017
  • As few multi-tower single-box multi-cell cable-stayed bridges with corrugated steel webs have been built, analysis is mostly achieved by combining single-girder model, beam grillage model and solid model in support of the design. However, such analysis methods usually suffer from major limitations in terms of the engineering applications: single-girder model fails to account for spatial effect such as shear lag effect of the box girder and the relevant effective girder width and eccentric load coefficient; owing to the approximation in the principle equivalence, the plane grillage model cannot accurately capture shear stress distribution and local stress state in both top and bottom flange of composite box girder; and solid model is difficult to be practically combined with the overall calculation. The usual effective width method fails to provide a uniform and accurate "effective length" (and the codes fail to provide a unified design approach at those circumstance) considering different shear lag effects resulting from dead load, prestress and cable tension in the construction. Therefore, a novel spatial grid model has been developed to account for shear lag effect. The theoretical principle of the proposed spatial grid model has been elaborated along with the relevant illustrations of modeling parameters of composite box girder with corrugated steel webs. Then typical transverse and longitudinal shear lag coefficient distribution pattern at the side-span and mid-span key cross sections have been analyzed and summarized to provide reference for similar bridges. The effectiveness and accuracy of spatial grid analysis methods has been finally validated through a practical cable-stayed bridge.

Nonlinear Analysis of the Segmentally Erected Prestressed Concrete Box-Girder Bridges and Post-Processing (PC 박스거더교량의 시공단계별 비선형 해석 및 후처리 기법)

  • 오병환;강영진;이형준;이명규;홍기증;김영진;임선택
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.368-373
    • /
    • 1994
  • Recently, a large number of box girder bridges with cantilevered decks have been constructed. Especially, segmentally erected prestressed concrete box girder bridges are widely used as economic and aesthetic solutions for long span bridges. Segmental erection is a particularly attractive construction alternative in cases where continuously supported formwork is impractical or uneconomical. In segmentally erected bridges, the structural systems are changed as the construction stages are progressive and redistribution of member forces occurs due to time dependent effects of concrete and relaxation of prestressing steel. Then, in segmentally erected bridges, analysis are required at each construction states. In this study, nonlinear analysis progam of the segmentally erected prestressed concrete box girder bridges is developed in taking into account nonlinearity of material and geometry, time dependent effect of concrete and relaxation of prestressing steel.

  • PDF

A Program for Distortional Analysis of Steel Box Girder Bridges (강상자형교의 뒤틀림 해석을 위한 프로그램 개발)

  • Lee, Hee Up;Yang, Chang Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.1 s.38
    • /
    • pp.13-22
    • /
    • 1999
  • The objective of this paper is to develop a program for distortional analysis of steel box girder bridges. This program is formulated by using MSDM(modified slope deflection method). Two examples are carried out to verify the validity of the developed technique and its computation procedures. The analyzed results are compared with the previously proposed methods, BEF(beam on elastic foundation) and EBEF(equivalent beam on elastic foundation). The BEF method is limited only to prismatic straight box girders. In the EBEF method, stiffness of the intermediate diaphragms is infinitely considered. On the other hand, stiffness of the intermediate diaphragms is idealized as spring contant in this study. And then, nonprismatic straight box girders can be analyzed using the same procedure. Therefore, the comparison shows that the MSDM algorithm proposed in this paper is more efficient and reliable. Also parametric studies are perfomed using the proposed algorithm.

  • PDF

Work Breakdown Structure(WBS) based on the Steel Box Girder Production Process Model (강교량 제작 프로세스 모델을 기반으로한 WBS구축)

  • Ha, Seung-Ho;Kim, Seok;Kim, Kyoung-Min;Park, Chan-Hyuk;Kim, Kyong-Ju
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2004.11a
    • /
    • pp.521-525
    • /
    • 2004
  • The objective of this study is to implement a WBS (Work Breakdown Structure) so as to support efficient information management through the construction process of Steel Box Girder Bridge. To meet this requirement. This study performs the analysis of the business process. Through the work, information flows and information management levels are identified. Information management in each manufacturing process was various in its level. For the efficient information management, skating and utilization in schedule, cost, resource, and quality management, it is recommended to utilize a WBS composed of major work section and element structure of the steel box girder.

  • PDF

Damage Detection in Steel Box Girder Bridge using Static Responses (강박스 거더교에서 정적 거동에 의한 손상 탐지)

  • Son, Byung Jik;Huh, Yong-Hak;Park, Philip;Kim, dong Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.693-700
    • /
    • 2006
  • To detect and evaluate the damage present in bridge, static identification method is known to be simple and effective, compared to dynamic method. In this study, the damage detection method in steel box girder bridge using static responses including displacement, slope and curvature is examined. The static displacement is calculated using finite element analysis and the slope and curvature are determined from the displacement using central difference method. The location of damage is detected using the absolute differences of these responses in intact and damaged bridge. Steel box girder bridge with corner crack is modeled using singular element in finite element method. The results show that these responses were significantly useful in detecting and predicting the location of damage present in bridge.

Experimental study on ultimate torsional strength of PC composite box-girder with corrugated steel webs under pure torsion

  • Ding, Yong;Jiang, Kebin;Shao, Fei;Deng, Anzhong
    • Structural Engineering and Mechanics
    • /
    • v.46 no.4
    • /
    • pp.519-531
    • /
    • 2013
  • To have a better understanding of the torsional mechanism and influencing factors of PC composite box-girder with corrugated steel webs, ultimate torsional strength of four specimens under pure torsion were analyzed with Model Test Method. Monotonic pure torsion acts on specimens by eccentric concentrated loading. The experimental results show that cracks form at an angle of $45^{\circ}$ to the member's longitudinal axis in the top and bottom concrete slabs. Longitudinal reinforcement located in the center of cross section contributes little to torsional capacity of the specimens. Torsional rigidity is proportional to shape parameter ${\eta}$ of corrugation and there is an increase in yielding torque and ultimate torque of specimens as the thickness of corrugated steel webs increases.

Measurement of Organic Solvent from Painting Work Inside the Steel Box Girder of Bridge (교량 스틸박스거더 도장공사의 유기용제 측정 실험)

  • Lee, Jung-Woo;Son, Ki-Sang
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.134-142
    • /
    • 2005
  • This study is to find out how organic solvent will be propagated from painting inside the steel box girder of bridge. $2.9m{\times}3.0m$ of inside size of steel box girder is not suitable for painters to do his work comfortably and hygienically. Substance density(ppm)inside the space of the box unsatisfactory hygienical condition. Most of organic solvent(mainly toluene) came down to 0.5m in two minutes and 53sec. But personal protection for painter should be properly kept against flying this heavy organic solvent. longitudinally 27.1m in length is a cell unit of the whole length of bridge. Model XP-3l6A made in Japan is a main instrumentation adjusted to sense organic solvent especially toluene which can be measured up to 10,000ppm. Scenario analysis by computer program, safer release 2.0 has been performed first to estimate how the organic solvent will be propagated. And then actual test was done as a model. This has been measured for approximately five(5) minutes, with 30 sec interval. Actual measurement results showed much higher $10{\sim}20%$ than result analyzed by the computer program, meaning that this painting work can give worse effect to the worker who is painting inside the box girder of the bridge. The first meas urement level over the floor set up at 30cm height from the floor, because organic solvent was estimated to stay at the level. and then, they were measured at 1.0m, 1.5m level respectively, more.