• 제목/요약/키워드: steady shear flow behavior

검색결과 54건 처리시간 0.026초

Numerical Studies of Flow Across End-to-Side Distal Vascular Bypass Graft Anastomoses

  • Kim, Y.H.;Kim, J.H.;Shin, J.W.
    • 대한의용생체공학회:의공학회지
    • /
    • 제13권4호
    • /
    • pp.339-352
    • /
    • 1992
  • A numerical simulation of the steady and pulsatile flow across the end-to-side anastomosis was performed In order to understand the role of flow dynamics in the preferential bevel opment of distal anastomotic intimal hyperplasla. The finite element technique was employed to solve two-dimensional unsteady pulsatile flow in that region. The results of the steady flow revealed that low shear stresses occur at the proximally occluded host artery and at the recirculation region in the Inner wall just distal to the toe region of the anastomosis. The nor- mal;zed wall shear rate was increased, as was the recirculation zone size in the host artery of the by-pass graft anastomosis, with increased anastomotic junction angle. In order to min imize the size of the low wall shear region which might result in the intimal hyperplasia in the by-pass graft anastomosis, a smaller anastomotic junction angle is recommended. The pulsatile flow simulation revealed flow that regions of low and ascillating mali shear do exist near the anastomosis as In the steady simulation. The shift of stagnation point depends on the pulsation of the flow. As the flow was accelerated at systole, the stagnation point moved downstream, disappered at early diastole and reappeared during late diastole. Low shear stress was also found along both walls of the occluded proximal artery. However, the diastolic flow behavior is quite different from the steady results. The vortex near the occluded artery moved downstream and inwardly during late systole, and disappeared during diastole. Recirculations proximal to the toe and heel regions were significant during diastole. Shear stress oscillation was found along the opposite wall. The results of the present study revealed that tow shear occurs at the proximally occluded host artery aud the recirculation region in the inner wall Just dlstal to the toe region of the anastomosis. The present study suggested that the regions of fluctuated wall shear stress wit flow separation is correlated with the preferential developing regions of anastomosis neointial fibrous hyperplasia.

  • PDF

Brownian Dynamics Simulation Study on the Anisotropic FENE Dumbbell Model for Concentrated Polymer Solution and the Melt

  • 심훈구;이창준;김운전;배형석
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권9호
    • /
    • pp.875-881
    • /
    • 2000
  • We study the rheological properties of concentrated polymer solution and the melt under simple shear and elon-gational flow using Brownian dynamicssimulation. In order to describe the anisotropic molecular motion, we modifiedthe Giesekus' mobility tensor by incorporating the finitely extensible non-linear elastic (FENE) spring force into dumbbell model. To elucidate the nature of this model, our simulation results are compared with the data of FENE-P ("P"standsfor the Perterin) dumbbell model and experiments. While in steady state both original FENE and FENE-P models exhibit a similar viscosity response,the growthof viscosity becomes dissimilar as the anisotropy decreases and the flowrate increases. The steady state viscosity obtained from the simulation well describes the experiments including the shear-thinning behavior in shear flow and viscosity-thinning behavior in elongational flow. But the growth of viscosity oforiginal FENE dumbbell model cannot describe the experimental results in both flow fields.

Mathematical Properties of the Differential Pom-Pom Model

  • Kwon, Youngdon
    • Macromolecular Research
    • /
    • 제9권3호
    • /
    • pp.164-170
    • /
    • 2001
  • Recently in order to describe the complex rheological behavior of polymer melts with long side branches like low density polyethylene, new constitutive equations called the pom-pom equations have been derived by McLeish and Larson on the basis of the reptation dynamics with simplified branch structure taken into account. In this study mathematical stability analysis under short and high frequency wave disturbances has been performed for the simplified differential version of these constitutive equations. It is proved that they are globally Hadamard stable except for the case of maximum constant backbone stretch (λ = q) with arm withdrawal s$\_$c/ neglected, as long as the orientation tensor remains positive definite or the smooth strain history in the now is previously given. However this model is dissipative unstable, since the steady shear How curves exhibit non-monotonic dependence on shear rate. This type of instability corresponds to the nonlinear instability in simple shear flow under finite amplitude disturbances. Additionally in the flow regime of creep shear flow where the applied constant shear stress exceeds the maximum achievable value in the steady now curves, the constitutive equations will possibly violate the positive definiteness of the orientation tensor and thus become Hadamard unstable.

  • PDF

Constitutive Equations for Dilute Bubble Suspensions and Rheological Behavior in Simple Shear and Uniaxial Elongational Flow Fields

  • Seo Dongjin;Youn Jae Ryoun
    • Fibers and Polymers
    • /
    • 제6권2호
    • /
    • pp.131-138
    • /
    • 2005
  • A theoretical model is proposed in order to investigate rheological behavior of bubble suspension with large deformation. Theoretical constitutive equations for dilute bubble suspensions are derived by applying a deformation theory of ellipsoidal droplet [1] to a phenomenological suspension theory [2]. The rate of deformation tensor within the bubble and the time evolution of interface tensor are predicted by applying the proposed constitutive equations, which have two free fitting parameters. The transient and steady rheological properties of dilute bubble suspensions are studied for several capillary numbers (Ca) under simple shear flow and uniaxial elongational flow fields. The retraction force of the bubble caused by the interfacial tension increases as bubbles undergo deformation. The transient and steady relative viscosity decreases as Ca increases. The normal stress difference (NSD) under the simple shear has the largest value when Ca is around 1 and the ratio Of the first NSD to the second NSD has the value of 3/4 for large Ca but 2 for small Ca. In the uniaxial elongational flow, the elongational viscosity is three times as large as the shear viscosity like the Newtonian fluid.

Small and Large Deformation Rheological Behaviors of Commercial Hot Pepper-Soybean Pastes

  • Choi, Su-Jin;Kang, Kyoung-Mo;Yoo, Byoung-Seung
    • Food Science and Biotechnology
    • /
    • 제15권6호
    • /
    • pp.871-876
    • /
    • 2006
  • Rheological behavior of commercial hot pepper-soybean paste (HPSP) was evaluated in small amplitude oscillatory and steady shear tests. Storage modulus (G'), loss modulus (G"), and complex viscosity (${\eta}^*$) as a function of angular frequency (${\omega}$), and shear stress (${\sigma}$) as a function of shear rate (${\gamma}$) data were obtained for 5 commercial HPSP samples. HPSP samples at $25^{\circ}C$ exhibited a non-Newtonian, shear-thinning flow behavior with high yield stresses and their flow behaviors were described by power law, Casson, and Herschel-Bulkley models. Time-dependent flow properties were also described by the Weltman, Hahn, and Figoni & Shoemaker models. Apparent viscosity over the temperature range of $5-35^{\circ}C$ obeyed the Arrhenius temperature relationship with activation energies (Ea) ranging 18.3-20.1 kJ/mol. Magnitudes of G' and G" increased with an increase in ${\omega}$, while ${\eta}^*$ decreased. G' values were higher than G" over the most of the frequency range (0.63-63 rad/sec), showing that they were frequency dependent. Steady shear viscosity and complex viscosity of the commercial HPSP did not fit the Cox-Merz rule.

반고형제제의 유동특성에 관한 연구 (제2보) : 바셀린의 온도의존성 유동거동 (Studies on The Flow Properties of Semi-Solid Dosage Forms (II) : Temperature-Dependent Flow Behavior of Vaseline)

  • 김정화;송기원;장갑식;이장우;이치호
    • 약학회지
    • /
    • 제41권1호
    • /
    • pp.38-47
    • /
    • 1997
  • Using a concentric cylinder type, rheometer. the steady shear flow properties of vaseline were measured over the temperature range of 20~70${\circ}$C. In this paper, the shea rate and temperature dependencies of its flow behavior were investigated and the validity of some flow models was examined. In addition, the flow characteristics over a wide temperature range were quantitatively evaluated by calculating the various material parameters. Main findings obtained from this study can be summarized as follows: (1) At relatively lower temperature range, vaseline is a plastic fluid with a yield stress and its flow behavior shows shear-thinning characteristics. (2) As the temperature increases, the value of a yield stress and the degree of shear-thinning become smaller, consequently, the Newtonian flow behavior occurs at a lower shear rate range. (3) At temperature range lower than 45${\circ}$C, the flow behavior shows much stronger temperature dependence, and a larger activation energy is needed for flow. (4) The Herschel-Bulkley model is the most effective one g$^3$ to predict the flow behavior of vaseline having a yield stress. The validity of the Bingham and Casson models becomes more available with increasing temperature. The flow behavior of vaseline at temperature range higher than 45${\circ}$C can be perfectly described by the Newton model.

  • PDF

폴리에틸렌옥사이드 수용액의 동적 점탄성 (Dynamic Viscoelastic Properties of Aqueous Poly(Ethylene Oxide) Solutions)

  • 송기원;배준웅;장갑식;노동현;박영훈;이치호
    • Journal of Pharmaceutical Investigation
    • /
    • 제29권4호
    • /
    • pp.295-307
    • /
    • 1999
  • Using a Rheometries Fluids Spectrometer (RFS II), the dynamic viscoelastic properties of aqueous poly(ethylene oxide) (PEO) solutions in small amplitude oscillatory shear flow fields have been measured over a wide range of angular frequencies. The angular frequency dependence of the storage and loss moduli at various molecular weights and concentrations was reported in detail, and the result was interpreted using the concept of a Deborah number De. In addition, the experimentally determined critical angular frequency at which the storage and loss moduli become equivalent was compared with the calculated characteristic time (or its inverse value), and their physical significance in analyzing the dynamic viscoelastic behavior was discussed. Finally, the relationship between steady shear flow and dynamic viscoelstic properties was examined by evaluating the applicability of some proposed models that describe the correlations between steady flow viscosity and dynamic viscosity, dynamic fluidity, and complex viscosity. Main results obtained from this study can be summarized as follows: (1) At lower angular frequencies where De<1, the loss modulus is larger than the storage modulus. However, such a relation between the two moduli is reversed at higher angular frequencies where De>l, indicating that the elastic behavior becomes dominant to the viscous behavior at frequency range higher than a critical angular frequency. (2) A critical angular frequency is decreased as an increase in concentration and/or molecular weight. Both the viscous and elastic properties show a stronger dependence on the molecular weight than on the concentration. (3) A characteristic time is increased with increasing concentration and/or molecular weight. The power-law relationship holds between the inverse value of a characteristic time and a critical angular frequency. (4) Among the previously proposed models, the Cox-Merz rule implying the equivalence between the steady flow viscosity and the magnitude of the complex viscosity has the best validity. The Osaki relation can be regarded to some extent as a suitable model. However, the DeWitt, Pao and HusebyBlyler models are not applicable to describe the correlations between steady shear flow and dynamic viscoelastic properties.

  • PDF

Viscoelastic Properties of Fresh Cement Paste to Study the Flow Behavior

  • Choi, Myoungsung;Park, Kyoungsoo;Oh, Taekeun
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권sup3호
    • /
    • pp.65-74
    • /
    • 2016
  • During concrete pumping, the migration and redistribution of particles occur in a pipe and the lubrication layer that forms between the bulk concrete and the pipe wall is the governing factor determining the flow behavior. In order to identify flow behavior of pumping, in this study, the viscoelastic properties related to the microstructural behavior of a flocculated suspension were examined by using dynamic oscillatory measurements. Cement paste is assumed to be a constituent material of the lubrication layer and ten cases of mixing design are employed by changing the proportions of mineral admixtures. The relationship between the yield stress obtained from the steady shear test and the dynamic modulus resulted from the oscillatory shear measurement was derived and the implications of the correlation are discussed. Moreover, based on the investigation of the viscoelastic properties with oscillatory measurements, the initial behavior of pumped concrete was analyzed systematically.