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Abstract: Recently in order to describe the complex rheological behavior of polymer melts with long side
branches like low density polyethylene, new constitutive equations called the pom-pom equations have
been derived by McLeish and Larson on the basis of the reptation dynamics with simplified branch
structure taken into account. In this study mathematical stability analysis under short and high frequency
wave disturbances has been performed for the simplified differential version of these constitutive equaions.

It is proved that they are globally Hadamard stable except for the case of maximum constant backbone
stretch (A = g) with arm withdrawal s. neglected, as long as the orientation tensor remains positive definite
or the smooth strain history in the flow is previously given. However this model is dissipative unstable,since

the steady shear flow curves exhibit non-monotonic dependence on shear rate. This type of instability
corresponds to the nonlinear instability in simple shear flow under finite amplitude disturbances. Additionally
in the flow regime of creep shear flow where the applied constant shear stress exceeds the maximum
achievable value in the steady flow curves, the constitutive equations will possibly violate the positive

definiteness of the orientation tensor and thus become Hadamard unstable.

Introduction

Even though nowadays rheologically complex
fluids like particle suspension of polymer melt are
very important in theoretical aspect as well as in
practical applications, rheological description of
some pure polymer melts still remains as a chal-
lenging task. Among them, low density polyethyl-
ene (LDPE) melt has been considered as the most
difficult one probably due to its high degree of
long chain branching." Especially so called Melt 1
(IUPAC A or IUPAC X) is the LDPE sample which
has been the most extensively characterized in the
viewpoint of rheology. It shows even in simple
flows highly nonlinear behavior such as high shear
thinning and at the same time high extensional
strain hardening, which altogether have prevented
reasonable rheological description by a single con-
stitutive model with one set of numerical parame-
ters.

Recently McLeish and Larson® proposed consti-
tutive equations called the pom-pom model in
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order to account for these complicated phenomena
presumably exhibited by long side branches
present in the LDPE melt. They derived the equa-
tions based on the reptation dynamics, introducing
simplified geometrical molecular structure with
long branches named as a pom-pom molecule, for
which the schematic illustration is represented in
Figure 1. The original pom-pom model is presented
as a set of integral/differential equations, and due
to their computational inefficiency a simplified
differential version is also suggested. Due to its
theoretical and also practical importance, these
model equations draw many rheologists' attention
and quite a few results have already been reported
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Figure 1. Schematic representation of a three-armed
pom-pom molecule {q = 3).
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on their applications.

Regarding LDPE melt rheology, Rubio and
Wagner’ compared the theoretical computation
by both versions of the pom-pom model with
experimental data, and found some qualitative
disagreement. Inkson and coworkers® also inves-
tigated the rheological behavior of LDPE includ-
ing Melt 1, and concluded reasonable experi-
mental description by the constitutive equations
(the differential version with arm withdrawal
length neglected for simplicity) in some transient
response of simple shear and extensional flows.
However, in their flow modeling they employed
about 20 numerical parameters in addition to
linear viscoelastic ones, and there is no descrip-
tion of other sets of available experimental data
such as strain recovery and so on. On the other
hand, in 1995 Simhambhatla and Leonov’ have
already described almost all available experimen-
tal data for Melt 1 (also for IUPAC A and IUPAC
X) successfully employing the globally stable
Leonov constitutive equation, which contains
only one nonlinear parameter, and in the above-
mentioned works their results have been ignored.

In this study, we investigate the mathematical
characteristics of the differential pom-pom consti-
tutive equations in view of stability. Since results
obtained by some unstable equations under some
simplifying approximations like inertialess approach
are not meaningful at all, these mathematical
analyses are quite important and should precede
extensive applications of the constitutive equations.
There are two types of instability in viscoelastic
constitutive equations such as Hadamard and dis-
sipative instabilities.® In this paper, we mainly
examine properties of the pom-pom model in the
sense of Hadamard stability that means the stabil-
ity of differential equations under short and high
frequency wave disturbances, and at the end we
make a remark on the dissipative instability that
arises in simple flows.

The Pom-Pom Model

The pom-pom constitutive equations for poly-
mer molecules with long side branches and more
than one branch points are derived on the basis
of the reptation dynamics for a melt of identical
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molecules with a very simplified branching struc-
ture, called 'pom-pom' molecules’ A typical pom-
pom molecule illustrated in Figure 1 consists of
two identical g-armed stars connected by a ‘back-
bone' section that pursues hypothetical repta-
tional motion. By McLeish and Larson,’? this pom-
pom molecule is suggested as the simplest analog
of the real polymeric molecule with long branch-
ing like LDPE (low density polyeiiylene).

The original pom-pom model is suggested as
the following complicated integral/differential
constitutive equations that include various vari-
ables and parameters in order to take into
account molecular geometry such as branch and
backbone structures and its time evolution.

The stress representation:

2, 15
o= —p5+G(l o 2qs +Sb )5 G= G0¢b’
Sp
9= 2gs,+s, (1)

Here o is the total stress tensor, d the unit tensor, p
the isotropic pressure, § the orientation tensor,
Gothe plateau modulus, ¢, the fraction of molecu-
lar weight contained in the crossbar {(backbone), g
the number of arms in one of two branches, and
s, and s, are dimensionless molecular weights of
the backbone and arm, respectively, scaled by the
entanglement molecular weight. s. explains the
dimensionless length of the arm withdrawn into
the backbone tube, A4 is the stretch ratio of the
backbone under the flow field, and thus both are
functions of time.
Backbone orientation:

exp( flr(t))thl’ uu

dE_ o T

1
S=
'r"’" Tp(t)
u’'= E(t—tl)‘u y

In these equations, the strain Q is slightly modi-
fied to become a universal strain measure of the
Doi-Edwards model with independent alignment
approximation which is employed by Rubio and
Wagner.® 7, is the relaxation time of backbone ori-
entation, u the unit vector, E the deformation gra-
dient tensor, v the velocity, V the gradient operator,
Vo' the transpose of the velocity gradient, and
the symbol< ), is the operation of averaging over
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the configuration space.
Backbone stretch:

dA _ T.g 1 ..
E-AV:} : S Ts(l 1) for A<gq. (3)

Here 7, is the characteristic time of backbone
stretch. The above equation is valid only for A< g
and even if equation (3} still expresses the increase
of A after it reaches the value ¢, 4 is fixed at the
value of q and the following evolution equation of
arm withdrawal starts to act.

Arm withdrawal:

ds. _( s )VT, 1
E—(q§+sc v : S ot

Here 1, is the characteristic time of arm relaxation.
Characteristic time for backbone orientation:

for A=q. (4)

= %si%’faq . (5)

Characteristic time for arm relaxation:

2 3
T,= raexp{%sa{(l—z)() _(1_%)(15)() }j’ ’ x=?

a

(6)
Characteristic time for backbone stretch:
T = sbta(o)q . (7)

In the above equations for characteristic times,
7, and 7, are dependent upon s. and thus func-
tions of time, but 7, is constant.

Due to computational inefficiency as well as
complexity of the double integral in the above
model equations (2), McLeish and Larson have
proposed rather simple differential version of the
pom-pom model. Hence in the differential pom-
pom constitutive equations, the following evolution
equation substitutes equations (2) for backbone
orientation:

1 = =c
Itie-9=0, S=& ®)

Here ‘V:=(dc/dt)—VvT-c—c.qu is the upper-con-
vected time derivative of the configuration tensor
c, and all the other equations from (1) to (7)
except (2) are kept. Note that -he evolution equa-
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tion (8) for the configuration tensor is exactly the
same with the evolution equation for the upper-
convected Maxwell model in the configuration
tensor representation (see for example, the paper
by Kwon and Leonov®).

In this study, we investigate the mathematical
characteristics only of the simplified differential
version of the pom-pom model, that is, equations

{1) and (3)-(8).
The Hadamard Stability Analysis

The Hadamard stability of differential equations
implies the stability of equations under extremely
short and high frequency wave disturbances.
Hence it accounts for the elastic properties of vis-
coelastic constitutive equations related to fast
responses such as type of differential operator and
elastic free energy.® Also it is often interpreted as
the viscoelastic change of type. In any case, no
matter what it means, unstable equations in Had-
amard sense should be understood as non-physical
formulation of viscoelastic phenomena and dis-
carded from the further application for viscoelastic
flow analysis.

Total set of equations for the isothermal incom-
pressible viscoelastic flow is composed of following
equations of motion and continuity in addition to
the constitutive equations explained in the previous
section:

dv

el V.o',

P V.v=0 9)

Here p is the constant density of the fluid and the
body force (gravity) is neglected for simplicity of
analysis. Upon the above set of equations (1) and
(3)-(9), we impose such short and high frequency
wave disturbances as

{0,8,A,v,4,p,5.} ={06,80.A0,00,20,P0,5:0}
+ {56,58,5A,0,5,8p,85,} ,
{60,88,8A,v,5),0p, 8.} (10)
= £{0,8,A,0,A,p,5.}expli(k-x—awt)e] .

Here {0,,80,A0,90,40.P0.5¢0} and {80,358, A, v, 81, 6p,
&_} are basic solutions and applied disturbances
of the corresponding variables, respectively, and
from now on we remove the subscript O in the
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basic solutions for convenience of notation.
{0,8,A,5,1,p,5,} is the amplitude of disturbing wave,
k the wave vector, o the frequency and ¢ is the
small amplitude parameter that also expresses the
short wavelength and high frequency of the dis-
turbing wave. As can be seen from equation (10),
if the frequency @ is complex-valued with positive
imaginary part, this disturbance implies the expo-
nential growth of perturbation with time, and thus
it means the Hadamard instability.

We divide the complete analysis into three
parts. First part is the stability analysis in the flow
regime of A < g, where s, always vanishes and
equation (4) does not play any role. In this case,
the relaxation time 7, is constant and in the per-
turbed system (10) s is absent. The second and
third parts of analysis consist in the region of A= g,
hence the backbone stretch ratio A is constant,
vanishes, and equation (4) starts to react in the
set of perturbed equations. For the simplest analy-
sis, in the second part we neglect the contribution
of the arm withdrawal length s, and such a sim-
plified set of the pom-pom constitutive equations
has already been employed by Inkson and
coworkers® to describe the rheological behavior of
low density polyethylene melt. However in the
third part, we accomplish the complete analysis of
stability including the s. variation for A= q.

Actually the second part of the analysis may be
regarded as meaningless, since it is composed of
equations that do not coincide with the original
formulation. However due to its simplicity the set
of equations is applied for the viscoelastic flow
analysis, and thus for the practical purpose the
investigation of its mathematical characteristics
deserves its consequence.

Stability Analysis when A <q. Since s. and
its perturbation vanish, we disturb equations (1),
(3), (8) and (9) according to equation (10). For
linear stability analysis we collect only the lowest
order terms in €, and then we obtain following
linear set of relations for the amplitudes of distur-
bances:

PV =Gk, kyVm=0,

oy=—p&;+G(2AAS,;+2°5y) ,
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_iQ=1S,, 9k, smn=l(emn—c—~meﬁj (11)
Ckk C,

if

Qi+ cipVik, +Cpvik,= 0

Here Q2 = wk- v is the frequency with Doppler's
shift on the basic flow field . We can solve the
above linear set and then obtain the equation of
stability as follows:

PV = GA28,S ViV Kk,
= pF= GAZS ok ks . (12)

Since the frequency @ and thus Q should be
real-valued for stability, the necessary and sufficient
condition of the Hadamard stability becomes

GAS ok, >0 (13)
which exactly requires the positive definiteness of
the second rank tensor 8. Due to equation (8),
the positive definiteness of 8 is equivalent to that
of c.

Regarding the positive definiteness of the con-
figuration tensor ¢, Hulsen’ and Leonov® inde-
pendently proved one theorem in some limited
situation. In that theorem, it is stated that for any
given piecewise smooth strain history with the ini-
tial condition ¢ = & the principal values of tensor
c are positive. Hence we can conclude that in the
flow regime of A< q the pom-pom constitutive
equations are Hadamard stable as long as the ten-
sor ¢ is positive definite, i.e., when the smooth
strain history is predefined. However it is worth
mentioning that in some given stress history the
constitutive equations with special type of steady
flow curves are proved to violate the positive defi-
niteness of the tensor c’.

Stability Analysis when A = g (s. neglected).
In this case, the backbone stretch A is fixed at the
value of the number of arms g, and thus its distur-
bance vanishes. Therefore substitution of O for A
in equations (11) and solving the system yield the
following dispersion relation:

PELVN; = GAP(8;S =28 n SV, (14)
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This specific problem of stability is equivalent to
the problem for the constitutive equations in a
sort of general Finger form such that

1 —0 2Pp_ij_ .2 -

z+?b(c—8)—0, —GQF=U—q Inl;, L=tre,

0=G{grc+@ylie—c’) + @:ls6} =-p8+Ga’E
1

au

_ _ _lp . 2
"’f_T)I;’ Li=trc, ]2_2(11»—trc), Iy;=det c.

(15)

Here F (or U) is the (dimensionless) elastic free
energy, i.e., the Helmholiz free energy correspond-
ing to the pom-pom model for this specific case.
According to above equations, for this constitutive
model the following holds

2 2

¢1=%, 0= 3=0, (Pn:-%, P12= P01 = Ppp=0
1

(16)

FU

where ¢;= R
it}

After rewriting the constitutive relation as equa-
tions (15), we may directly apply the following

necessary and sufficient condition for Hadamard
stability proved in the paper®:

(1)ﬁ1>0,

(ii) w+2B,/cc>0  (izj=k),

(), + 2, om0 2 4wy + 28, e 2y > w2 JC5;
(i#j#k) ( 17)

where ¢; is the eigenvalue of the tensor ¢ and
ﬂi =0 + ®oC;

w; = (I-c) B+ 2 -2~} ~2ly/c)
{@1+ (P12 + @or)ci+ @aoCl} (18)

Hence for this problem, B,= ¢, irrespective of
the value of subscript i, and w; = (I, - ¢)g, + 2(I,%-
2l - ¢? - 2I/c)gu. In order to demonstrate the insta-
bility of these constitutive equations, we here con-
sider the case of simple shear flow, where the
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principal values and invariants of tensor ¢ valid at
the moment of step strain ybecome

c1=¢, =1k, cz=1, c=();+2+,/y4+4_;7)/2,
L=L=/+3. (19)

Then the second inequality in (17) for i =1
reduces to

Je(F +3)(F +3-0)-2.Jc(¥ +4F +3-c*-2/0)
+2(#+3)>0, (20)

which is always satisfied for all values of v. How-
ever for i = 2 or 3 it restricts the value of ¢ or yby

(F+3)F+3-1c)-2( +47 +3-2¢-1/c)
+2.Je(#+3)>0 and -y-#+12>0 (21)

The latter of inequalities (21) vields the most
rigorous constraint such as y<./3 for stability.
Hence we conclude that the pom-pom constitutive
equations for A = q are Hadamard unstable when
the instantaneous shear strain exceeds ./3 if we
neglect the variable s.. Also it is highly probable
for the results obtained in the paper by Inkson et
al.* to be located in the unstable solution branch
when the strain rate is high.

Complete Stability Analysis when A=q.
In order to study the stability characteristics of the
model equations in their full description, now we
have to consider the disturbance of s., and thus
the relaxation times 7, and 7, are also perturbed,
while A is constant. The stress relation (1) and the
evolution equation for arm withdrawal (4) under
the disturbance yield

oy = ~pd; +GQ(Q + 2% Sy+ ZsG—qSijgc )
b

. ° (22)
—Q§C = (gsb + SC)Smankn .

Solving the linear system of 1%, 2™ 5" and 6™ of
equations (11) with (22) results in

PGP, = Gq(q + 2*&)(@jsmn_simsjn)oié,.kmkn
% (23)

which has to be positive for stability. In the tensor
¢ representation, due to positivity of G, q, s., s,
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and I;, the inequality imposed on (23) can be
rewritten as

. 14 . (24)
=>(A/—I_lc‘)}mcjn—lg—/zc,-jcmn)vikjvmkn>0 .

This condition of stability coincides with the
case Of (p1=]./A/]_ R (p11=—1/2113/2 and (/)2-:(012:(021
=@»=0 for the following inequality obtained in
the reference'”:

B = B, VikVik,
= [@18mcin + @2y SimCin—GimCioC an—CimCin T CijCmn)
+2011¢4Cmn + 20126511 Crun~CrnaCn)
+ 2021 (11— Ci6€)Crmn o
+2000(11Cj=C1C o) 11Crmn=CingCpn) Vil Vimk, > 0(.2,5)

Then corresponding potential equivalent for the-

constitutive equations in this particular stability
problem becomes

u=2% (26)

At this point, we can apply the Renardy's stabil-
ity condition,"" which states that for the K-BKZ
class of constitutive equations the convexity of the
thermodynamic potential U in terms of invariants
JI and /I, is the sufficient condition for stability,
and it has been verified that Renardy's condition
is also sufficient for Hadamard stability when it is
applied to differential Maxwell-like models with
an upper convected derivative."

Since the equivalent potential (26) clearly satisfies
the Renardy's condition, we can finally conclude
that in the flow regime of A = q the pom-pom
constitutive equations are Hadamard stable as
long as the tensor ¢ is positive definite.

Remark on the Properties of Tensor ¢

According to the preceding results on stability in
this work, the pom-pom constitutive equations
are globally Hadamard stable (stable in Hadamard
sense in any type of flow and in any value of
velocity gradient tensor) except for the case of
A = q with s. neglected, as long as the configura-
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tion tensor ¢ is positive definite. Now we discuss
the extreme situation when possibly the positive
definiteness can be violated.

In the steady state of simple shear flow, the con-
stitutive equations (1), {(3) and (8) reduce to

—2rcyp+(e13-1)=0, ~Tep+cz=0, co=cn=1,

I % —
=C3y=0, AL ~Ba-1)=0,
C13=Cg3 3+21_2 Ts( )
- 2 Ci2
0e=CGAz55: (27)

where the dimensionless shear rate is defined as
=1 and 1, is fixed at the value of 7(s.=0).
Then we finally obtain the backbone stretch ratio
and the shear stress as

1=E>[E_ r’

a1
L1 opc=2*—L, (28
22 3+2r2} oG-t or @

as long as A < q. From the above equations the
ratio between the relaxation times 7,7, should
exceed the value of 1/2 to avoid singularity. In
Figure 2, the behavior between the dimensionless
variables I" and ¢,,/G is shown for several values
of 7/1,, and all the curves are valid when ¢=2
(hence they are valid always), since for those val-
ues of 7,/7, A never exceeds 2. All the flow curves
show maxima and then decreasing branches of

0.1 4

GIZ/G

0.01

0.1 1 10 100
A

Figure 2. The dimensionless shear stress vs. dimension-
less shear rate in steady simple shear flow of the differ-
ential pom-pom constitutive equations for various values
of the ratio between relaxation times.
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solution, and the achievable shear stresses are all
bounded below the maximum. Here we can
directly apply the theorem derived in the paper®
that asserts so called 'dissipative instability'. It is
evident first that mechanically and thermodynam-
ically, the decreasing branch of the flow curve in
Figure 2 is the unstable solution. Consider the sys-
tem that lies initially at some »oint of that decreas-
ing branch, and then remove the applied force.
Then as the force decreases, the shear rate (I') or
the flow rate increases in accordance to the flow
curve, and finally as the force approaches 0, the
flow rate diverges to infinity. Another type of
severe blow-up instability exhibited by the dissi-
pative unstable constitutive models has been
exposed in reference,” where the violation of the
positive definiteness of ¢ is also demonstrated.
Therefore now we can deduce the following: the
pom-pom constitutive equations are dissipative
unstable, and in that unstable flow regime, i.e., in
the simple shear flow where the constant shear
stress greater than the maximum achievable shear
stress in the steady flow curves is applied, the pos-
itive definiteness of tensor c is violated and they
also become Hadamard unstcble.

Conclusion

Mathematical stability analysis under short and
high frequency wave disturbances has been per-
formed for the pom-pom constitutive equations
that are recently suggested to describe fluid
dynamical behavior of polymer melts with long
side branches like low density polyethylene. It is
proved that they are globally Hadamard stable
except for the case of maximum constant back-
bone stretch (A = q) with arm withdrawal s, neg-
lected, as long as the orientation tensor 8 or ¢
remains positive definite, that is, the smooth strain
history is pre-defined. However in the sense of
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dissipative stability, this model is unstable, since
the steady shear flow curves exhibit non-mono-
tonic dependence on shear rate. Additionally in
the flow regime of creep shear flow where the
applied constant shear stress exceeds the maxi-
mum achievable value in the steady flow curves,
the constitutive equations will possibly violate the
positive definiteness of the orientation tensor and
thus become Hadamard unstable.
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